

Name: _____

- Put your name in the “ _____ ” above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

1. For the following element f of S_9 , do the following:

- compute $f \circ f \circ f \circ f(9)$,
- write the smallest positive integer n such that

$$\overbrace{f \circ \cdots \circ f}^{n \text{ times}}(9) = 9,$$

and

- write down an element m in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with the property that $f \circ f \circ f(m) = m$.

$$f: \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$1 \mapsto 7$$

$$2 \mapsto 2$$

$$3 \mapsto 4$$

$$4 \mapsto 5$$

$$5 \mapsto 3$$

$$6 \mapsto 1$$

$$7 \mapsto 8$$

$$8 \mapsto 9$$

$$9 \mapsto 6$$

2. Suppose that G is a group with a subgroup H . For any $g \in G$, define $gH = \{gh \mid h \in H\}$.

(a) Write down two elements A of D_4 such that $F \in A\langle R \rangle$. (For example, we see that $A = I$ does not work since $I\langle R \rangle = \{I, R, R^2, R^3\}$ does not contain F .)

(b) Write down three distinct subgroups of D_4 of size 2.

(c) Write down three elements B in D_5 such that $\langle B \rangle = \langle R \rangle$.

Proofs

(I) Let $H = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid \text{both } m \text{ and } n \text{ are even}\}$. Prove that H is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

(II) Suppose that G is a group and write

$$H = \{g^{130} \mid g \in G\}.$$

Prove: if G is commutative, then H is a subgroup of G .

(III) Define the operation $*$ on \mathbb{R} by setting $x * y = x^2 + y^2$. Either prove that $(\mathbb{R}, *)$ is a group or prove that it is not a group.

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J . Prove that

$$I \cup J \text{ is a subgroup of } G \quad \text{if and only if} \quad \text{either } I \subseteq J \text{ or } J \subseteq I.$$