

Some group theory definitions

Contents

1 Sets and functions	1
2 Integers	3
3 Group basics	3

1 Sets and functions

Definition 1.1. We will not define a *set* formally. Informally, it is a collection of objects.

Given a set S and a “thing” s , we write $s \in S$ if s is a member of S . In fact, a good way to think about a set is that for any “thing” t , either $t \in S$ or $t \notin S$. (In particular, the “thing” t cannot “be in S twice”.)

Definition 1.2. If S, T are sets, we say S is a subset of T and write $S \subseteq T$ if the following statement is true:

$$\text{for all things } t : \text{if } t \in S, \text{ then } t \in T.$$

This is often and conveniently abbreviated:

$$\text{for all } s \in S, s \in T.$$

Definition 1.3. Suppose S, T are sets. We say $S = T$ when $S \subseteq T$ and $T \subseteq S$.

Definition 1.4. Suppose that S, T are sets.

- $S \cup T := \{\text{things } t \mid t \in S \text{ or } t \in T\}.$
- $S \cap T := \{\text{things } t \mid t \in S \text{ and } t \in T\}.$
- $S \setminus T := \{\text{things } t \mid t \in S \text{ and } t \notin T\}.$
- $S \times T = \{(s, t) \mid s \in S \text{ and } t \in T\}.$

Definition 1.5. We will also decline to formally define functions. (Although it would be easier to formally define these than sets.) A *function* consists of three things:

- a domain (which is a set),
- a codomain (which is a possibly different set), and
- a rule that assigns to every element of the function’s domain an element of the function’s codomain.

If I write “ $f: S \rightarrow T$ ”, this is a function with domain S and codomain T . I will also say “ f is a function *from* S *to* T . For every element $s \in S$, the element of T that f assigns to s is denoted $f(s)$. (In particular, for any $s \in S$, we know $f(s) \in T$.)

Definition 1.6. Suppose $f: S \rightarrow T$ is a function. The *range* of f is the set

$$\{t \in T \mid \text{there exists } s \in S \text{ such that } f(s) = t\}.$$

Synonyms are *the image of f* or the notation “ $f(S)$ ”.

Definition 1.7. Suppose f, g are functions. We say that $f = g$ when

- the functions f, g have the same domain and codomain and
- for every s in the domains of f, g , we have $f(s) = g(s)$.

Definition 1.8. Suppose that S is a set. Define *the identity function on S* to be the function, which we will denote “ Id_S ”, with domain and codomain S , along with the rule:

$$\text{for all } s \in S, \text{Id}_S(s) = s.$$

Definition 1.9. Suppose $f: S \rightarrow T$ is a function.

- We say that f is *injective* if

$$\text{for all } s_1, s_2 \in S: \text{if } f(s_1) = f(s_2), \text{ then } s_1 = s_2.$$

- We say that f is *surjective* if

$$\text{for all } t \in T, \text{ there exists } s \in S \text{ such that } f(s) = t.$$

- We say that f is *bijective* if it is injective and surjective.

Definition 1.10. Suppose that $f: R \rightarrow S$ and $g: S \rightarrow T$ are functions. The *composition* of f and g , denoted $g \circ f$, is the function with domain R and codomain T , along with the rule

$$\text{for all } r \in R: (g \circ f)(r) = g(f(r)).$$

Fact 1.11. *Function composition is associative. Specifically: if*

- $f: R \rightarrow S$,
- $g: S \rightarrow T$, and
- $h: T \rightarrow U$

are functions, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Definition 1.12. Suppose $f: S \rightarrow T$ is a function, and $g: T \rightarrow S$ is another function. We say that g is *the inverse of f* if

- $g \circ f = \text{Id}_S$ and
- $f \circ g = \text{Id}_T$.

If a function has an inverse, we say it is *invertible*.

Fact 1.13. *Suppose $f: S \rightarrow T$ is a function. Then the following statement is true:*

$$f \text{ is bijective} \quad \text{if and only if} \quad f \text{ is invertible}$$

2 Integers

Definition 2.1. Suppose that $m, n \in \mathbb{Z}$. We say m divides n

there exists $j \in \mathbb{Z}$ such that $n = j \cdot m$.

We also say n is divisible by m or n is a multiple of m . The notation we use is $m | n$.

Example 2.2. • The statement $9 | 45$ is true because $45 = 5 \cdot 9$.

- The statement $9 | 44$ is false.
- The statement $9 \nmid 44$ is true.
- The statement $9 | 0$ is true because $0 = 0 \cdot 9$.
- The statement $0 \nmid 9$ is true.

3 Group basics

Definition 3.1. Let S be a set. A *binary operation on S* is a function (Definition 1.5) from $S \times S$ to S . Usually we give our binary operations names like “ \star ”. And if $(s_1, s_2) \in S \times S$, we usually write $s_1 \star s_2$ instead of “ $\star(s_1, s_2)$ ”.

Definition 3.2. Suppose S is a set and \star is a binary operation on S (Definition 3.1).

- We say \star is *commutative* if

for all $r, s \in S$, $r \star s = s \star r$.

- We say \star is *associative* if

for all $r, s, t \in S$, $(r \star s) \star t = r \star (s \star t)$.

- If $e \in S$ has the property that

for all $s \in S$, $e \star s = s \star e$,

we say that e is an *identity for \star* .

- We remark that if e is an identity for \star , then it is the only identity for \star . Indeed, if f is an identity for \star , then

$$\begin{aligned} e &= e \star f && \text{(since } f \text{ is an identity)} \\ &= f && \text{(since } e \text{ is an identity).} \end{aligned}$$

- Suppose e is an identity for \star (necessarily the unique identity). If $s, t \in S$ have the property that $s \star t = t \star s = e$, then we say that t is the *inverse of s* and s is the *inverse of t* . We also say that s and t are *invertible*.

Definition 3.3. Suppose that G is a set with a binary operation \star (Definition 3.1). We say that (G, \star) is a *group* if

- \star is associative,
- \star admits an identity,
- every element of G has an inverse. (Remark: this last bullet point only makes sense because \star has a (unique) identity—see Definition 3.1.)

If (G, \star) is a group, we will often be lazy and allow ourselves to write “ G is a group”.

Definition 3.4. If (G, \star) is a group (Definition 3.3), we say that G is *abelian* if \star is commutative.

Definition 3.5. If $n \in \mathbb{Z}_{\geq 3}$, then D_n is the symmetry group of an n -sided regular polygon with the operation of function composition.