HW 7

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. For any group G and element $g \in G$, define the homomorphism

$$e_{G,g}: \mathbb{Z} \to G$$
$$n \mapsto g^n.$$

(No need to prove that $e_{G,g}$ is a homomorphism.) Let's write $e_{G,g}(\mathbb{Z}) = \{e_{G,g}(n) \mid n \in \mathbb{Z}\}$. Enumerate elements of $e_{G,g}(\mathbb{Z})$ and find ker $(e_{G,g})$ in the following situations:

(a)
$$G = D_4, g = R$$
,

- (b) $G = \mathbb{Z}_{20}, g = 15,$
- (c) $G = D_4, g = F$.
- (d) $G = S_9, g = id_{\{1,2,3,4,5,6,7,8,9\}}$

Solution. (a) $e_G, g(\mathbb{Z}) = \{I, R, R^2, R^3\}, \ker(e_G, g) = 4\mathbb{Z},$

- (b) $e_G, g(\mathbb{Z}) = \{0, 5, 10, 15\}, \ker(e_G, g) = 4\mathbb{Z},$
- (c) $e_G, g(\mathbb{Z}) = \{I, F\}, \text{ ker } (e_G, g) = 2\mathbb{Z}, \text{ and }$
- (d) $e_G, g(\mathbb{Z}) = \{ \mathrm{id}_{\{1,2,3,4,5,6,7,8,9\}} \}, \mathrm{ker}(e_G, g) = \mathbb{Z}.$
- 2. If G is a subgroup with a subgroup H, let's write G/H for the set $\{Hg \mid g \in G\}$. Recall that G/H is a partition of G.
 - (a) Enumerate all elements of $4\mathbb{Z}/8\mathbb{Z}$.
 - (b) Enumerate all elements of $D_5/\langle R \rangle$.

Solution. (a) $4\mathbb{Z}/8\mathbb{Z} = \{4\mathbb{Z} + 0, 4\mathbb{Z} + 1, 4\mathbb{Z} + 2, 4\mathbb{Z} + 3\}.$ (b) $D_5/\langle R \rangle = \{D_5I, D_5F\}.$

Proofs

(I) Suppose that G, H are groups and $\psi: G \to H$ is a homomorphism.

- (a) Let's write $\psi(G) = \{\psi(g) \mid g \in G\}$. Prove that $\psi(G)$ is a subgroup of H.
- (b) For J a subgroup of H, let's write $\psi^{-1}(J) = \{g \in G \mid \psi(g) \in J\}$. Prove that $\psi^{-1}(J)$ is a subgroup of G.

Proof. Let's write e_G, e_H for the identities of G, H, respectively.

- (a) We must show three things.
 - From class we know that $\psi(e_G) = e_H$, so that $e_H \in \psi(G)$ and $\psi(G) \neq \emptyset$.
 - Suppose that $h_1, h_2 \in \psi(G)$. Then there are $g_1, g_2 \in G$ with $\psi(g_1) = h_1$ and $\psi(g_2) = h_2$. Since ψ is a homomorphism, we know that $h_1h_2 = \psi(g_1)\psi(g_2) = \psi(g_1g_2) \in \psi(G)$.
 - Finally, choose any $h \in \psi(G)$, so there is some $g \in G$ with $\psi(g) = h$. From class, we know that $h^{-1} = (\psi(g))^{-1} = \psi(g^{-1}) \in \psi(G)$.

- (b) We must show three things.
 - From class we know that $\psi(e_G) = e_H \in J$, so that $e_G \in \psi^{-1}(J)$ and $\psi^{-1}(J) \neq \emptyset$.
 - Suppose that $g_1, g_2 \in \psi^{-1}(J)$. Since ψ is a homomorphism and J is a subgroup, we know that $\psi(g_1g_2) = \psi(g_1)\psi(g_2) \in J$, so that $g_1g_2 \in \psi^{-1}(J)$.
 - Finally, choose any $g \in \psi^{-1}(J)$. From class, and since J is a subgroup, we know that $\psi(g^{-1}) = (\psi(g))^{-1} \in J$, so that $g^{-1} \in \psi^{-1}(J)$.

(II) Suppose that G is a commutative group, and let n be a positive integer. Define

$$\phi: G \to G$$
$$g \mapsto g^n.$$

- (a) Prove that ϕ is a homomorphism of groups.
- (b) Prove that ker $(\phi) = \{g \in G \mid \text{ord}(g) \text{ is a divisor of } n\}.$
- (c) Suppose that G is finite. Suppose further that |G| and n have no common factors greater than 1. Prove that ϕ is an isomorphism.

Proof. Let's write e for the identity of G.

(a) Choose any $g, h \in G$, and note that

$$\phi(gh) = (gh)^n$$

= $g^n h^h$ (since G is commutative)
= $\phi(g)\phi(h)$,

so we see that ϕ is a homomorphism.

- (b) We must show two inclusions.
 - Suppose that $g \in \ker(\phi)$, so that $g^n = \phi(g) = e$. By fact from class, we know that $\operatorname{ord}(g)$ is a divisor of n.
 - Now suppose that $g \in G$ and $\operatorname{ord}(g)$ is a divisor of n: let's say there's some $m \in \mathbb{Z}_{>0}$ with $n = \operatorname{ord}(g) \cdot m$. Then $\phi(g) = g^n = (g^{\operatorname{ord}(g)})^m = e^m = e$, so $g \in \ker(\phi)$.
- (c) Since G is finite, we need only show that ϕ is injective to deduce that it is bijective; the result will then follow from part (a). Well, from class we know we can show ϕ is injective by showing ker $(\phi) = \{e\}$; to this end, suppose that $g \in \ker(\phi)$. Then $g^n = \phi(g) = e$, so that $\operatorname{ord}(g)$ is a divisor of n. But by Lagrange's theorem, we know that $\operatorname{ord}(g)$ is also a divisor of |G|. By hypothesis, we see that $\operatorname{ord}(g) = 1$; that is, we see that g = e, as desired.

(III) Suppose that G_1, G_2 are groups, and define

$$\phi: G_1 \times G_2 \to G_2$$
$$(g_1, g_2) \mapsto g_2.$$

- (a) Prove that ϕ is a homomorphism of groups.
- (b) Prove that ker (ϕ) is isomorphic to G_1 .

Proof. (a) Choose any $(g_1, g_2), (h_1, h_2) \in G_1 \times G_2$ and note that

$$\phi((g_1, g_2)(h_1, h_2)) = \phi(g_1h_1, g_2h_2) = g_2h_2 = \phi(g_1, g_2)\phi(g_1, g_2).$$

(b) Let's write e_1, e_2 for the identities of G_1, G_2 , respectively. I claim that for any $g_1 \in G_1$, the element (g_1, e_2) is in ker (ϕ) ; indeed, note that $\phi(g_1, e_2) = e_2$ by the definition of ϕ . Thus, we may define

$$\psi: G_1 \to \ker(\phi)$$
$$g_1 \mapsto (g_1, e_2)$$

• To see that ψ is a homomorphism, choose any $g_1, h_1 \in G_1$ and note that

$$\psi(g_1h_1) = (g_1h_1, e_2) = (g_1, e_2)(h_1, e_2) = \psi(g_1)\psi(h_1).$$

- To see that ψ is injective, choose any $g_1 \in \ker(\psi)$. Then $(e_1, e_2) = \psi(g_1) = (g_1, e_2)$, so we see $g_1 = e_1$. By fact from class, this means that ψ is injective.
- Finally, to see that ψ is surjective, choose any $(g_1, g_2) \in \ker(\phi)$. This means that $e_2 = \phi(g_1, g_2) = g_2$, so that

$$\psi(g_1) = (g_1, e_2) = (g_1, g_2).$$