HW 7

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. For any group G and element $g \in G$, define the homomorphism

$$e_{G,g}: \mathbb{Z} \to G$$
$$n \mapsto q^n.$$

(No need to prove that $e_{G,g}$ is a homomorphism.) Let's write $e_{G,g}(\mathbb{Z}) = \{e_{G,g}(n) \mid n \in \mathbb{Z}\}$. Enumerate elements of $e_{G,g}(\mathbb{Z})$ and find ker $(e_{G,g})$ in the following situations:

- (a) $G = D_4, g = R$,
- (b) $G = \mathbb{Z}_{20}, g = 15$
- (c) $G = D_4, g = F$.
- (d) $G = S_9, g = id_{\{1,2,3,4,5,6,7,8,9\}}.$
- 2. If G is a subgroup with a subgroup H, let's write G/H for the set $\{Hg \mid g \in G\}$. Recall that G/H is a partition of G.
 - (a) Enumerate all elements of $4\mathbb{Z}/8\mathbb{Z}$.
 - (b) Enumerate all elements of $D_5/\langle R \rangle$.

Proofs

- (I) Suppose that G,H are groups and $\psi{:}\,G \to H$ is a homomorphism.
 - (a) Let's write $\psi(G) = \{\psi(g) \mid g \in G\}$. Prove that $\psi(G)$ is a subgroup of H.
 - (b) For J a subgroup of H, let's write $\psi^{-1}(J) = \{g \in G \mid \psi(g) \in J\}$. Prove that $\psi^{-1}(J)$ is a subgroup of G.
- (II) Suppose that G is a commutative group, and let n be a positive integer. Define

$$\phi: G \to G$$
$$g \mapsto g^n.$$

- (a) Prove that ϕ is a homomorphism of groups.
- (b) Prove that ker $(\phi) = \{g \in G \mid \text{ord}(g) \text{ is a divisor of } n\}.$
- (c) Suppose that G is finite. Suppose further that |G| and n have no common factors greater than 1. Prove that ϕ is an isomorphism.
- (III) Suppose that G_1, G_2 are groups, and define

$$\phi: G_1 \times G_2 \to G_2$$
$$(g_1, g_2) \mapsto g_2.$$

- (a) Prove that ϕ is a homomorphism of groups.
- (b) Prove that ker (ϕ) is isomorphic to G_1 .