Due: 21 May 2024

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. Let $G = \mathbb{Z}_{20}$ and $H = \langle 15 \rangle$. Write down all elements of all (right) cosets of H in G.

Solution. Since $H = \{0, 5, 10, 15\}$, we have

- $H = H + 0 = \{0, 5, 10, 15\},\$
- $H + 1 = \{1, 6, 11, 16\},\$
- $H + 2 = \{2, 7, 12, 17\},$
- $H + 3 = \{3, 8, 13, 18\}$, and
- $H + 4 = \{4, 9, 14, 19\}.$
- 2. Let $G = D_4$ and $H = \langle R \rangle$. Write down all elements of all (right) cosets of H in G.

Solution. Since $H = \{I, R, R^2, R^3\}$, we have

- $H = HI = \{I, R, R^2, R^3\}$ and
- $HF = \{F, FR^3, FR^2, FR\}.$
- 3. Define an equivalence relation on D_5 by setting, for all $g, h \in D_5$:

$$q \sim h$$
 if and only if $\langle R \rangle q = \langle R \rangle h$.

For $g \in D_5$, write [g] for the equivalence class of g using this relation. Write down all elements in [F].

Solution. Since $\langle R \rangle = \{I, R, R^2, R^3, 2^2\}$, we have

- $\langle R \rangle I = \langle R \rangle R = \langle R \rangle R^2 = \langle R \rangle R^3 = \langle R \rangle R^4 = \langle R \rangle$ and
- $\langle R \rangle F = \langle R \rangle RF = \langle R \rangle R^2F = \langle R \rangle R^3F = \langle R \rangle R^4F = \{F, RF, R^2F, R^3F, R^4F\}.$

Thus, we see $[F] = \{R, RF, R^2F, R^3F, R^4F\}.$

Proofs

(I) Let G be a group, let H be a subgroup of G, and let $a, b \in G$. Prove

$$Ha = Hb$$
 if and only if $ab^{-1} \in H$.

Proof. Let e be the identity element of G.

- First, suppose Ha = Hb. Since $e \in H$, there exists $h \in H$ with a = ea = hb. Then $ab^{-1} = h \in H$.
- Conversely, suppose there is some $h_0 \in H$ with $ab^{-1} = h_0$. We prove Ha = Hb in two steps:
 - To see that $Ha \subseteq Hb$, choose any $h \in H$ and note that $ha = h(h_0b) = (hh_0)b \in Hb$.
 - For the other inclusion, choose any $h \in H$ and note that $hb = h((h_0)^{-1}a) = (h(h_0)^{-1})a \in Ha$.

(II) Suppose n is a positive odd integer, that G is a group of order 2n, and that $a,b \in G$ have orders 2,n, respectively. Prove that

$$G = \{a^i b^j \mid i \in \{0, 1\} \text{ and } j \in \{0, \dots, n-1\}\}.$$

Proof. Since ord (b) = n, we know that $|\langle b \rangle| = n$, so that $[G : \langle b \rangle] = \frac{2n}{n} = 2$. That is, there are precisely two cosets of $\langle b \rangle$ in G. By Lagrange's Theorem, the fact that n is odd and ord (a) = 2 tells us that $a \notin \langle b \rangle$, so the two cosets of $\langle b \rangle$ that partition G are:

- $\langle b \rangle = \{b^0, \dots, b^{n-1}\}$ and
- $a\langle b\rangle = \{ab^0, \dots, ab^{n-1}\}.$
- (III) Let \mathcal{F} be the set of all functions with domain and codomain \mathbb{R} . Define \sim on \mathcal{F} by setting for all $f, g \in \mathcal{F}$:

$$f \sim g$$
 if and only if $f(0) = g(0)$.

Prove that \sim is an equivalence relation on \mathcal{F} .

Proof. We must prove three things.

- To prove \sim is reflexive, choose any $f \in \mathcal{F}$. Since f(0) = f(0), we see $f \sim f$.
- To prove \sim is symmetric, choose any $f, g \in \mathcal{F}$ and assume that $f \sim g$. By definition of \sim , this means that f(0) = g(0). Well then, this means g(0) = f(0) too, so that $g \sim f$.
- Finally, to prove \sim is transitive, choose any $f, g, h \in \mathcal{F}$ and assume that $f \sim g$ and $g \sim h$. By definition of \sim , this means that f(0) = g(0) and g(0) = h(0). But then, by transitivity of equality, we see that f(0) = h(0), so that $f \sim h$.