HW 6

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

- 1. Let $G = \mathbb{Z}_{20}$ and $H = \langle 15 \rangle$. Write down all elements of all (right) cosets of H in G.
- 2. Let $G = D_4$ and $H = \langle R \rangle$. Write down all elements of all (right) cosets of H in G.
- 3. Define an equivalence relation on D_5 by setting, for all $g, h \in D_5$:

 $g \sim h$ if and only if $\langle R \rangle g = \langle R \rangle h$.

For $g \in D_5$, write [g] for the equivalence class of g using this relation. Write down all elements in [F].

Proofs

(I) Let G be a group, let H be a subgroup of G, and let $a, b \in G$. Prove

Ha = Hb if and only if $ab^{-1} \in H$.

(II) Suppose n is a positive odd integer, that G is a group of order 2n, and that $a, b \in G$ have orders 2, n, respectively. Prove that

$$G = \{a^{i}b^{j} \mid i \in \{0, 1\} \text{ and } j \in \{0, \dots, n-1\}\}.$$

(III) Let \mathcal{F} be the set of all functions with domain and codomain \mathbb{R} . Define ~ on \mathcal{F} by setting for all $f, g \in \mathcal{F}$:

 $f \sim g$ if and only if f(0) = g(0).

Prove that \sim is an equivalence relation on \mathcal{F} .