HW 5 Due: 14 May 2025

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a
good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Write down all the orders of all the elements of Dy.

Solution. e I has order 1,
e R has order 4,
e R? has order 2,
e R? has order 1,

F has order 2,

e F'R has order 2,

e F'R? has order 2, and

e F'R3 has order 2.

2. Write down all the orders of all the elements of S3 x Zs.

Solution. Let € =id 2 3.

(€,0) has order 1,

(€,1) has order 2,

((12),0) has order 2,
((12),1) has order 2,
(13),0) has order 2,
(13),1) has order 2,
(23),0) has order 2,
(23),1) has order 2,
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123),0) has order 3,
123),1) has order 6,
132),0) has order 3, and
132),1) has order 6.
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3. Let f =(14563) € Sg. Write down all the orders of all the elements of (f).

Solution. Let’s write € = id(1 2,3,4,5,6,7,8,0)- Since ord (f) = 5, we know from class that (f) is isomorphic
to Zs and (f) = {e,f, f2,f3,f4}. Moreover, € has order 1, and f, f2, £, f* all have order 5. O



Proofs

(I) Let G be a group and suppose g,h € G have finite order. Prove: if gh = hg, then ord (gh) is a divisor
of lem (ord (g), ord (h)).

Proof. Let e be the identity of G and let m = lem (ord (g),ord (h)), so there are a,b € Z such that
m =aord (¢g) and m =bord (h). Now we use the fact that gh = hg to see that

(gh)m _ gmhm _ gaord (g)hbord(h) _ (gord (g))a (hord (h))b _ 6a€b =e,

so by | , Chapter 10, Theorem 5] we know that ord (gh) is a divisor of m. O

(II) Suppose that G is a finite cyclic group of order n, with generator g € G. Let j € Zsq. Prove: if there
exist a,b € Z with an +bj =1, then G = (gJ).

Proof. Let e be the identity of G. Since (gj> ¢ G, we need only show that G ¢ (gj). And since G = (g),

this means we must show g € (gj ) Since G is cyclic of order n, we know ¢g" = e. Thus, we use | ,
Chapter 10, Theorem 1] to note that

(9) = 9" =e"g" = (9")" ¢ = g""g" = g""*" = g" = g,
SO g € (gj>, as desired. O

(III) Let m € Zso and let J be any subgroup of Z,,. Prove that if j is the smallest positive integer in J,
then J = (j). (In particular: all subgroups of Z,, are cyclic.)

Proof. Suppose that k € J, and perform long division to obtain g, r € Zso such that

e k=qj+rand

o <.

Since J is a subgroup, we know —j € J; hence r = k+¢(—j) € J. But j was the smallest positive integer
in J, so the fact that r < j tells us that » = 0. That is, k = gj € J, as desired. O

(IV) Suppose that G, H are groups and ¢:G — H is an isomorphism. Prove: for all g € G,
ord (g) = ord (¢(9)).

Proof. Let eg,eyg be the identity elements of G, H, respectively. Then by a fact from class, the
definition of order, and the definition of isomorphism, we see that

e = ¢(ec) = ¢ (97 @) = p(9) ¥,

so ord (¢(g)) < ord(g). Now let’s suppose j € {0,1,...,0ord (g) - 1}, and #(g)? = er; we'd like to show
that 57 = 0. Well in this case, we see (b(gj) =¢(g)! =eg = ¢ (eq), so by the injectivity of ¢ we deduce
that ¢’ = eq. But hey, we assumed that j < ord (¢)! This means that j = 0, as desired. O
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