HW 4 Solutions

1 Computations

1. Consider the function $g \in S_4$ given by

$$1 \mapsto 2$$

$$2 \mapsto 1$$

$$3 \mapsto 3$$

$$4 \mapsto 4$$
.

Write down all functions $f \in S_4$ with the property that

(a)
$$f \circ f \circ f = id_A$$
,

(b)
$$f \circ g = g \circ f$$
,

(c)
$$f \circ g = id_{\{1,2,3,4\}}$$
.

(d)
$$f(1) \in \{1, 2\}$$
 and $f(2) \in \{1, 2\}$.

Solution. I will use the very-convenient cycle notation from Chapter 8 of [Pin10].

(a)
$$id_A$$
, (123), (132), (134), (143), (234), (243).

(b)
$$id_A$$
, (12), (12)(34), (34).

(c) (12).

(d) id_A , (12), (12)(34), (34).

2. How many elements (f,g) in $S_3 \times S_3$ are there that satisfy $(f,g)(f,g)(f,g) = (\mathrm{id}_{\{1,2,3\}},\mathrm{id}_{\{1,2,3\}})$?

Solution. There are 9 such elements:

$$(id_{\{1,2,3\}}, id_{\{1,2,3\}}),$$
 $(id_{\{1,2,3\}}, (123)),$ $(id_{\{1,2,3\}}, (132)),$ $((123), id_{\{1,2,3\}}),$ $((123), (123)),$ $((123), (132)),$ $((132), id_{\{1,2,3\}}),$ $((132), (123)),$ $((132), (132)).$

2 Proofs

(I) Let A be a set and B any finite subset of A. Define

$$G = \{ f \in S_A \mid \text{for all } b \in B, f(b) \in B \}.$$

Prove that G is a subgroup of S_A .

Proof. • Since $id_A \in G$, we see that $G \neq \emptyset$.

- Choose $f, g \in G$. To see that $f \circ g \in B$, choose any $b \in B$. Since $g \in G$, we know that $g(b) \in B$; and since $f \in G$, we know that $f(g(b)) \in B$. Thus, we see that $f \circ g \in G$ by the definition of G.
- Finally, suppose that f∈ G. By definition of G, we know that f(B) ⊆ B, but since B is finite and f is (in particular) injective, we know f(B) = B.
 Thus, for any b∈ B, there exists b₀ ∈ B such that f(b₀) = b. In other words, we see that f⁻¹(b) = b₀ ∈ B. Since we chose b arbitrarily, we see f⁻¹ ∈ G by definition of G.

(II) Define the set

$$G = \{ f \in S_5 \mid f(2) = 3 \}.$$

Is G a subgroup of S_5 ? Prove your answer is correct.

Proof. By a lemma from class we know any subgroup of S_5 contains $id_{\{1,2,3,4,5\}}$. But

$$id_{\{1,2,3,4,5\}}(2) = 2 \neq 3,$$

so $id_{\{1,2,3,4,5\}} \notin G$. Thus, we conclude that G is not a subgroup of S_5 .

(III) Let G be a group, and define

$$D = \{(g,g) \mid g \in G\}$$
.

Assume that D is a subgroup of $G \times G$. Prove that G is isomorphic to D.

Proof. Define

$$\phi: G \to D$$
$$g \mapsto (g, g).$$

- To see that ϕ is surjective, choose any $g \in G$, so that $(g,g) \in D$ is arbitrary. But then we see $\phi(g) = (g,g)$.
- To see that ϕ is injective, choose any $g, h \in G$ and assume that $\phi(g) = \phi(h)$. But then $(g,g) = \phi(g) = \phi(h) = (h,h)$, so that g = h.
- To see that ϕ respects the operations of G, D, choose any $g, h \in G$ and note that $\phi(gh) = (gh, gh) = (g, g)(h, h) = \phi(g)\phi(h)$.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

¹This is always true and in principle, we could prove it. However, I'm not requiring a proof. At this time.