Name:_____

- Put your name in the "_____" above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

- 1. For the following element f of S_9 , do the following:
 - (a) write f in disjoint cycle form,
 - (b) write f as a product of transpositions,
 - (c) state the parity of f, and
 - (d) write $(126) \circ (389) \circ f$ in disjoint cycle form.

$$\begin{array}{c} f: \{1,2,3,4,5,6,7,8,9\} \rightarrow \{1,2,3,4,5,6,7,8,9\} \\ & 1 \mapsto 7 \\ & 2 \mapsto 2 \\ & 3 \mapsto 4 \\ & 4 \mapsto 5 \\ & 5 \mapsto 3 \\ & 6 \mapsto 1 \\ & 7 \mapsto 8 \\ & 8 \mapsto 9 \\ & 9 \mapsto 6 \end{array}$$

2. Suppose that G is a group with a subgroup H. For any $g \in G$, define $gH = \{gh \mid h \in H\}$. In disjoint cycle form, enumerate all elements of gH in the following situations:

(a) $G = S_3, H = \langle (123) \rangle, g = (132),$

(b) $G = S_3$, $H = \langle (123) \rangle$, g = (12), and

(c) $G = S_3, H = \langle (123) \rangle, g = (23).$

Proofs

- (I) Let $H = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid \text{ both } m \text{ and } n \text{ are even} \}.$
 - (a) Prove that H is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

(b) Prove that $\mathbb{Z}\times\mathbb{Z}$ is isomorphic to H

(II) Suppose that G, H are groups and that $\phi: G \to H$ is an isomorphism. Prove: if G is commutative, then H is commutative.

(III) Suppose that G is a group, say with identity e. For any $g \in G$, define

$$f_g: G \to G$$
$$x \mapsto gx.$$

We have shown that $f_g \in S_G.$ (You don't need to do this again.) Prove:

for all $g \in G,$ if f_g is an isomorphism, then g = e.

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J. Prove that

 $I \cup J$ is a subgroup of G if and only if either $I \subseteq J$ or $J \subseteq I$.