Math 344

Spring 2024

Final

Computations

- 1. (a) Write down all elements of order 2 in D_6 .
 - (b) Write down all elements of order 3 in D_6 .

Solution. (a) $F, RF, R^2F, R^3F, R^4F, R^5F, R^3$ (b) R^2, R^4

2. Write down

- (a) An infinite group that is not cyclic,
- (b) An infinite noncommutative group,
- (c) A group of size 81 where every element has either order 3 or order 1, and
- (d) A noncommutative group of size 88.

Solution. Some examples are

- (a) $\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$,
- (b) $\mathbb{Z} \times S_3$,
- (c) $(\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$, and
- (d) $(\mathbb{Z}/11\mathbb{Z}) \times D_4$.

3. For the following element f of S_9 , do the following:

- (i) write f in disjoint cycle form,
- (ii) write f as a product of transpositions, and
- (iii) write $(136) \circ (369) \circ f$ in disjoint cycle form.

$$\begin{array}{c} f: \{1,2,3,4,5,6,7,8,9\} \rightarrow \{1,2,3,4,5,6,7,8,9\} \\ & 1 \mapsto 4 \\ & 2 \mapsto 7 \\ & 3 \mapsto 2 \\ & 4 \mapsto 8 \\ & 5 \mapsto 3 \\ & 6 \mapsto 1 \\ & 7 \mapsto 6 \\ & 8 \mapsto 5 \\ & 9 \mapsto 9 \end{array}$$

Solution. (a) (14853276)

(b) (16)(17)(12)(13)(15)(18)(14)

(c) (1485)(27963)

Proofs

(I) Suppose that G is a group with 77 elements, that H is any group, and that $\phi: G \to H$ is a homomorphism. Prove that if ker (ϕ) contains fewer than 7 elements, then ϕ is injective.

Proof. By Lagrange's Theorem, we know that $|\ker(\phi)|$ is a divisor of 77. Thus, we know $|\ker(\phi)|$ is either 1, 7, 11, or 77. By our hypothesis, the only option is $|\ker(\phi)| = 1$. But then, by fact from class, we know that ϕ is injective.

(II) Suppose that G is a cyclic group and H is a normal subgroup of G. Prove that G/H is cyclic.

Proof. Since G is cyclic, there is some $g_0 \in G$ with $G = \langle g_0 \rangle$. To show that G/H is cyclic, choose any $g_1 \in G$, so that Hg_1 is arbitrary in G/H. Since $G = \langle g \rangle$, there is some $j \in \mathbb{Z}$ such that $g_1 = (g_0)^j$. But then we use the operation on G/H to see that $Hg_1 = H(g_0)^j = (Hg_0)^j$, so that $G/H = \langle Hg_0 \rangle$. \Box

(III) Let $G = (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$ and $H = \langle (6\mathbb{Z} + 3, 3\mathbb{Z} + 1) \rangle$.

$$\phi: \mathbb{Z} \to (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$$
$$a \mapsto (6\mathbb{Z} + 3a, 3\mathbb{Z} + a)$$

- (a) Prove that ϕ is a homomorphism.
- (b) Prove that the range of ϕ is H.
- (c) Prove that ker $(\phi) = 6\mathbb{Z}$.
- (d) Apply the Fundamental Homomorphism Theorem to deduce that H is isomorphic to $\mathbb{Z}/6\mathbb{Z}$.

Proof. (a) Choose any $a, b \in \mathbb{Z}$ and note that

$$\begin{aligned} \phi(a+b) &= (6\mathbb{Z} + 3(a+b), 3\mathbb{Z} + (a+b)) & (\text{definition of } \phi) \\ &= (6\mathbb{Z} + (3a+3b), 3\mathbb{Z} + (a+b)) & (\text{addition on } \mathbb{Z} \text{ is commutative}) \\ &= ((6\mathbb{Z} + 3a) + (6\mathbb{Z} + 3b), (3\mathbb{Z} + a) + (3\mathbb{Z} + b)) & (\text{the operations on } \mathbb{Z}/6\mathbb{Z} \text{ and } \mathbb{Z}/3\mathbb{Z}) \\ &= (6\mathbb{Z} + 3a, 3\mathbb{Z} + a) + (6\mathbb{Z} + 3b, 3\mathbb{Z} + b) & (\text{the operation on } (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})) \\ &= \phi(a) + \phi(b) & (\text{definition of } \phi.) \end{aligned}$$

- (b) Choose any integer j, so that $j(6\mathbb{Z}+3, 3\mathbb{Z}+1) = (6\mathbb{Z}+3j, 3\mathbb{Z}+j)$ is arbitrary in H. So then $\phi(j) = (6\mathbb{Z}+3j, 3\mathbb{Z}+j) = j(6\mathbb{Z}+3, 3\mathbb{Z}+1)$, and we see the range of ϕ contains H. Conversely, choose any $j \in \mathbb{Z}$ and note $\phi(j) = (6\mathbb{Z}+3j, 3\mathbb{Z}+j) = j(6\mathbb{Z}+3, 3\mathbb{Z}+1) \in H$, so that the range of ϕ is contained in H.
- (c) Choose any integer j, so 6j is arbitrary in $6\mathbb{Z}$. So then $\phi(6j) = (6\mathbb{Z} + 3(6j), 3\mathbb{Z} + (6j)) = (6\mathbb{Z} + 0, 3\mathbb{Z} + 0)$ since $18j \in 6\mathbb{Z}$ and $6j \in 3\mathbb{Z}$. Thus we see that $6\mathbb{Z} \subseteq \ker(\phi)$. Conversely, choose any $j \in \ker(\phi)$, so that $(6\mathbb{Z} + 0, 3\mathbb{Z} + 0) = \phi(j) = (6\mathbb{Z} + 3j, 3\mathbb{Z} + j)$. Then we see that $6 \mid 3j$ and $3 \mid j$, so j is even and divisible by 3. Thus, we see $6 \mid j$, so $j \in 6\mathbb{Z}$. That is, we see $\ker(\phi) \subseteq 6\mathbb{Z}$.
- (d) By the Fundamental Homomorphism Theorem and (a)–(c), we know

$$\mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/\ker(\phi) \simeq \operatorname{im}(\phi) = H$$