HW 8

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. Consider the function

$$\phi: (\mathbb{Z}/9\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \to \mathbb{Z}/3\mathbb{Z}$$
$$(9\mathbb{Z} + m, 3\mathbb{Z} + n) \mapsto 3\mathbb{Z} + n.$$

We know by Exercise (IV)(a) that ϕ is a homomorphism of groups. Let's write G for $(\mathbb{Z}/9\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$ and H for ker (ϕ) .

- (a) Enumerate all elements of H
- (b) Enumerate all elements of G/H.

Solution. (a)

 $H = \{ (9\mathbb{Z}, 3\mathbb{Z}), (9\mathbb{Z} + 1, 3\mathbb{Z}), (9\mathbb{Z} + 2, 3\mathbb{Z}), (9\mathbb{Z} + 3, 3\mathbb{Z}), (9\mathbb{Z} + 4, 3\mathbb{Z}), (9\mathbb{Z} + 5, 3\mathbb{Z}), (9\mathbb{Z} + 6, 3\mathbb{Z}), (9\mathbb{Z} + 7, 3\mathbb{Z}), (9\mathbb{Z} + 8, 3\mathbb{Z}) \}$

```
(b)
```

$$/H = \{H, H + (9\mathbb{Z}, 3\mathbb{Z} + 1), H + (9\mathbb{Z}, 3\mathbb{Z} + 2)\}$$

2. Enumerate all elements of $4\mathbb{Z}/8\mathbb{Z}$.

Solution.
$$4\mathbb{Z}/8\mathbb{Z} = \{8\mathbb{Z}+0, 8\mathbb{Z}+4\}.$$

Proofs

(I) Suppose that G is a commutative group, and let n be a positive integer. Define

$$\phi: G \to G$$
$$g \mapsto g^n.$$

- (a) Prove that ϕ is a homomorphism of groups.
- (b) Prove that ker $(\phi) = \{g \in G \mid \text{ord}(g) \text{ is a divisor of } n\}.$

G

(c) Suppose that G is finite. Suppose further that |G| and n have no common factors greater than 1. Prove that ϕ is an isomorphism.

Proof. Let's write e for the identity of G.

(a) Choose any $g, h \in G$, and note that

$$\phi(gh) = (gh)^n$$

= $g^n h^h$ (since G is commutative)
= $\phi(g)\phi(h)$,

so we see that ϕ is a homomorphism.

- (b) We must show two inclusions.
 - Suppose that $g \in \ker(\phi)$, so that $g^n = \phi(g) = e$. By fact from class, we know that $\operatorname{ord}(g)$ is a divisor of n.
 - Now suppose that $g \in G$ and $\operatorname{ord}(g)$ is a divisor of n: let's say there's some $m \in \mathbb{Z}_{>0}$ with $n = \operatorname{ord}(g) \cdot m$. Then $\phi(g) = g^n = (g^{\operatorname{ord}(g)})^m = e^m = e$, so $g \in \ker(\phi)$.
- (c) Since G is finite, we need only show that ϕ is injective to deduce that it is bijective; the result will then follow from part (a). Well, from class we know we can show ϕ is injective by showing ker $(\phi) = \{e\}$; to this end, suppose that $g \in \ker(\phi)$. Then $g^n = \phi(g) = e$, so that $\operatorname{ord}(g)$ is a divisor of n. But by Lagrange's theorem, we know that $\operatorname{ord}(g)$ is also a divisor of |G|. By hypothesis, we see that $\operatorname{ord}(g) = 1$; that is, we see that g = e, as desired.

(II) Suppose G is a group and H is a normal subgroup of G. Prove: if G is abelian, then G/H is abelian. *Proof.* Suppose that $a, b \in G$ and note that since G is commutative:

$$(Ha)(Hb) = H(ab) = H(ba) = (Hb)(Ha).$$

- (III) Let G be a group with a subgroup H. Prove H is normal if and only if for all $g \in G$, we have gH = Hg.
 - *Proof.* First let's suppose that H is normal. Choose any $g \in G$.
 - Choose any $h \in H$, so that $gh \in Hg$ is arbitrary. The fact that H is a normal subgroup tells us that $gh = gh(g^{-1}g) = (ghg^{-1})g \in Hg$.
 - Choose any $h \in H$, so that $hg \in Hg$ is arbitrary. The fact that H is a normal subgroup tells us that $hg = (gg^{-1})hg = g(g^{-1}hg) \in gH$.
 - Now suppose that for all $g \in G$, we have gH = Hg. To show that H is normal, choose any $g \in G$ and $h \in H$. Use our hypothesis to find an $h_0 \in H$ with $gh = h_0g$ and note that $ghg^{-1} = (h_0g)g^{-1} = h_0 \in H$.
- (IV) Suppose that G_1, G_2 are groups, and define

$$\phi: G_1 \times G_2 \to G_2$$
$$(g_1, g_2) \mapsto g_2.$$

- (a) Prove that ϕ is a homomorphism of groups.
- (b) Prove that ker (ϕ) is isomorphic to G_1 .

Proof. (a) Choose any $(g_1, g_2), (h_1, h_2) \in G_1 \times G_2$ and note that

$$\phi((g_1,g_2)(h_1,h_2)) = \phi(g_1h_1,g_2h_2) = g_2h_2 = \phi(g_1,g_2)\phi(g_1,g_2).$$

(b) Let's write e_1, e_2 for the identities of G_1, G_2 , respectively. I claim that for any $g_1 \in G_1$, the element (g_1, e_2) is in ker (ϕ) ; indeed, note that $\phi(g_1, e_2) = e_2$ by the definition of ϕ . Thus, we may define

$$\psi: G_1 \to \ker(\phi)$$
$$g_1 \mapsto (g_1, e_2).$$

• To see that ψ is a homomorphism, choose any $g_1, h_1 \in G_1$ and note that

$$\psi(g_1h_1) = (g_1h_1, e_2) = (g_1, e_2)(h_1, e_2) = \psi(g_1)\psi(h_1).$$

- To see that ψ is injective, choose any $g_1 \in \ker(\psi)$. Then $(e_1, e_2) = \psi(g_1) = (g_1, e_2)$, so we see $g_1 = e_1$. By fact from class, this means that ψ is injective.
- Finally, to see that ψ is surjective, choose any $(g_1, g_2) \in \ker(\phi)$. This means that $e_2 = \phi(g_1, g_2) = g_2$, so that

$$\psi(g_1) = (g_1, e_2) = (g_1, g_2).$$