HW 8

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Consider the function

$$
\begin{aligned}
\phi:(\mathbb{Z} / 9 \mathbb{Z}) \times(\mathbb{Z} / 3 \mathbb{Z}) & \rightarrow \mathbb{Z} / 3 \mathbb{Z} \\
(9 \mathbb{Z}+m, 3 \mathbb{Z}+n) & \mapsto 3 \mathbb{Z}+n
\end{aligned}
$$

We know by Exercise (IV)(a) that ϕ is a homomorphism of groups. Let's write G for $(\mathbb{Z} / 9 \mathbb{Z}) \times(\mathbb{Z} / 3 \mathbb{Z})$ and H for $\operatorname{ker}(\phi)$.
(a) Enumerate all elements of H
(b) Enumerate all elements of G / H.
2. Enumerate all elements of $4 \mathbb{Z} / 8 \mathbb{Z}$.

Proofs

(I) Suppose that G is a commutative group, and let n be a positive integer. Define

$$
\begin{aligned}
\phi: G & \rightarrow G \\
g & \mapsto g^{n} .
\end{aligned}
$$

(a) Prove that ϕ is a homomorphism of groups.
(b) Prove that $\operatorname{ker}(\phi)=\{g \in G \mid \operatorname{ord}(g)$ is a divisor of $n\}$.
(c) Suppose that G is finite. Suppose further that $|G|$ and n have no common factors greater than 1. Prove that ϕ is an isomorphism.
(II) Suppose G is a group and H is a normal subgroup of G. Prove: if G is abelian, then G / H is abelian.
(III) Let G be a group with a subgroup H. Prove H is normal if and only if for all $g \in G$, we have $g H=H g$.
(IV) Suppose that G_{1}, G_{2} are groups, and define

$$
\begin{aligned}
\phi: G_{1} \times G_{2} & \rightarrow G_{2} \\
\left(g_{1}, g_{2}\right) & \mapsto g_{2}
\end{aligned}
$$

(a) Prove that ϕ is a homomorphism of groups.
(b) Prove that $\operatorname{ker}(\phi)$ is isomorphic to G_{1}.

