HW 7

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. Let $G = \mathbb{Z}_{20}$ and $H = \langle 15 \rangle$. Write down all elements of all (right) cosets of H in G.

Solution. Since $H = \{0, 5, 10, 15\}$, we have

- $H = H + 0 = \{0, 5, 10, 15\},\$
- $H + 1 = \{1, 6, 11, 16\},\$
- $H + 2 = \{2, 7, 12, 17\},\$
- $H + 3 = \{3, 8, 13, 18\}$, and
- $H + 4 = \{4, 9, 14, 19\}.$

2. Let $G = D_4$ and $H = \langle R \rangle$. Write down all elements of all (right) cosets of H in G.

Solution. Since $H = \{I, R, R^2, R^3\}$, we have

- $H = HI = \{I, R, R^2, R^3\}$ and
- $HF = \{F, FR^3, FR^2, FR\}.$
- 3. For any group G and element $g \in G$, define the homomorphism

$$G_{,g}: \mathbb{Z} \to G$$
$$n \mapsto g^n.$$

e

(No need to prove that $e_{G,g}$ is a homomorphism.) Let's write $e_{G,g}(\mathbb{Z}) = \{e_{G,g}(n) \mid n \in \mathbb{Z}\}$. Enumerate elements of $e_{G,g}(\mathbb{Z})$ and find ker $(e_{G,g})$ in the following situations:

- (a) $G = D_4, g = R$,
- (b) $G = \mathbb{Z}_{20}, g = 15,$
- (c) $G = D_4, g = F$.
- (d) $G = S_9, g = id_{\{1,2,3,4,5,6,7,8,9\}}.$

Solution. (a) $e_G, g(\mathbb{Z}) = \{I, R, R^2, R^3\}, \ker(e_G, g) = 4\mathbb{Z},$

- (b) $e_G, g(\mathbb{Z}) = \{0, 5, 10, 15\}, \ker(e_G, g) = 4\mathbb{Z},$
- (c) $e_G, g(\mathbb{Z}) = \{I, F\}, \text{ ker } (e_G, g) = 2\mathbb{Z}, \text{ and }$
- (d) $e_G, g(\mathbb{Z}) = \{ \operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}} \}, \ker(e_G, g) = \mathbb{Z}.$

Proofs

(I) Let G be a group, let H be a subgroup of G, and let $a, b \in G$. Prove

$$Ha = Hb$$
 if and only if $ab^{-1} \in H$.

Proof. Let e be the identity element of G.

- First, let's suppose that Ha = Hb. Since $e \in H$, there is some $h \in H$ with a = ea = hb. Then we see $ab^{-1} = h \in H$.
- Conversely, suppose there is some $h_0 \in H$ with $ab^{-1} = h_0$. We prove Ha = Hb in two steps:
 - To see that $Ha \subseteq Hb$, choose any $h \in H$ and note that $ha = h(h_0b) = (hh_0)b \in Hb$.
 - For the other inclusion, choose any $h \in H$ and note that $hb = h((h_0)^{-1}a) = (h(h_0)^{-1})a \in Ha$.
- (II) Suppose n is a positive odd integer, that G is a group of order 2n, and that $a, b \in G$ have orders 2, n, respectively. Prove that

$$G = \left\{ a^{i}b^{j} \mid i \in \{0, 1\} \text{ and } j \in \{0, \dots, n-1\} \right\}.$$

Proof. Since ord (b) = n, we know that $|\langle b \rangle| = n$, so that $[G : \langle b \rangle] = \frac{2n}{n} = 2$. That is, there are precisely two cosets of $\langle b \rangle$ in G. By Lagrange's Theorem, the fact that n is odd and ord (a) = 2 tells us that $a \notin \langle b \rangle$, so the two cosets of $\langle b \rangle$ that partition G are:

• $\langle b \rangle = \{ b^0, \dots, b^{n-1} \}$ and

•
$$a\langle b\rangle = \{ab^0, \dots, ab^{n-1}\}.$$

(III) Suppose that G, H are groups and $\psi: G \to H$ is a homomorphism.

- (a) Let's write $\psi(G) = \{\psi(g) \mid g \in G\}$. Prove that $\psi(G)$ is a subgroup of H.
- (b) For J a subgroup of H, let's write $\psi^{-1}(J) = \{g \in G \mid \psi(g) \in J\}$. Prove that $\psi^{-1}(J)$ is a subgroup of G.

Proof. Let's write e_G, e_H for the identities of G, H, respectively.

- (a) We must show three things.
 - From class we know that $\psi(e_G) = e_H$, so that $e_H \in \psi(G)$ and $\psi(G) \neq \emptyset$.
 - Suppose that $h_1, h_2 \in \psi(G)$. Then there are $g_1, g_2 \in G$ with $\psi(g_1) = h_1$ and $\psi(g_2) = h_2$. Since ψ is a homomorphism, we know that $h_1h_2 = \psi(g_1)\psi(g_2) = \psi(g_1g_2) \in \psi(G)$.
 - Finally, choose any $h \in \psi(G)$, so there is some $g \in G$ with $\psi(g) = h$. From class, we know that $h^{-1} = (\psi(g))^{-1} = \psi(g^{-1}) \in \psi(G)$.
- (b) We must show three things.
 - From class we know that $\psi(e_G) = e_H \in J$, so that $e_G \in \psi^{-1}(J)$ and $\psi^{-1}(J) \neq \emptyset$.
 - Suppose that $g_1, g_2 \in \psi^{-1}(J)$. Since ψ is a homomorphism and J is a subgroup, we know that $\psi(g_1g_2) = \psi(g_1)\psi(g_2) \in J$, so that $g_1g_2 \in \psi^{-1}(J)$.
 - Finally, choose any $g \in \psi^{-1}(J)$. From class, and since J is a subgroup, we know that $\psi(g^{-1}) = (\psi(g))^{-1} \in J$, so that $g^{-1} \in \psi^{-1}(J)$.

_