As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Let $G=\mathbb{Z}_{20}$ and $H=\langle 15\rangle$. Write down all elements of all (right) cosets of H in G.

Solution. Since $H=\{0,5,10,15\}$, we have

- $H=H+0=\{0,5,10,15\}$,
- $H+1=\{1,6,11,16\}$,
- $H+2=\{2,7,12,17\}$,
- $H+3=\{3,8,13,18\}$, and
- $H+4=\{4,9,14,19\}$.

2. Let $G=D_{4}$ and $H=\langle R\rangle$. Write down all elements of all (right) cosets of H in G.

Solution. Since $H=\left\{I, R, R^{2}, R^{3}\right\}$, we have

- $H=H I=\left\{I, R, R^{2}, R^{3}\right\}$ and
- $H F=\left\{F, F R^{3}, F R^{2}, F R\right\}$.

3. For any group G and element $g \in G$, define the homomorphism

$$
\begin{aligned}
e_{G, g}: \mathbb{Z} & \rightarrow G \\
n & \mapsto g^{n} .
\end{aligned}
$$

(No need to prove that $e_{G, g}$ is a homomorphism.) Let's write $e_{G, g}(\mathbb{Z})=\left\{e_{G, g}(n) \mid n \in \mathbb{Z}\right\}$. Enumerate elements of $e_{G, g}(\mathbb{Z})$ and find ker $\left(e_{G, g}\right)$ in the following situations:
(a) $G=D_{4}, g=R$,
(b) $G=\mathbb{Z}_{20}, g=15$,
(c) $G=D_{4}, g=F$.
(d) $G=S_{9}, g=\operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}}$.

Solution. (a) $e_{G}, g(\mathbb{Z})=\left\{I, R, R^{2}, R^{3}\right\}, \operatorname{ker}\left(e_{G}, g\right)=4 \mathbb{Z}$,
(b) $e_{G}, g(\mathbb{Z})=\{0,5,10,15\}$, $\operatorname{ker}\left(e_{G}, g\right)=4 \mathbb{Z}$,
(c) $e_{G}, g(\mathbb{Z})=\{I, F\}, \operatorname{ker}\left(e_{G}, g\right)=2 \mathbb{Z}$, and
(d) $e_{G}, g(\mathbb{Z})=\left\{\operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}}\right\}, \operatorname{ker}\left(e_{G}, g\right)=\mathbb{Z}$.

Proofs

(I) Let G be a group, let H be a subgroup of G, and let $a, b \in G$. Prove

$$
H a=H b \quad \text { if and only if } \quad a b^{-1} \in H .
$$

Proof. Let e be the identity element of G.

- First, let's suppose that $H a=H b$. Since $e \in H$, there is some $h \in H$ with $a=e a=h b$. Then we see $a b^{-1}=h \in H$.
- Conversely, suppose there is some $h_{0} \in H$ with $a b^{-1}=h_{0}$. We prove $H a=H b$ in two steps:
- To see that $H a \subseteq H b$, choose any $h \in H$ and note that $h a=h\left(h_{0} b\right)=\left(h h_{0}\right) b \in H b$.
- For the other inclusion, choose any $h \in H$ and note that $h b=h\left(\left(h_{0}\right)^{-1} a\right)=\left(h\left(h_{0}\right)^{-1}\right) a \in H a$.
(II) Suppose n is a positive odd integer, that G is a group of order $2 n$, and that $a, b \in G$ have orders 2 , n, respectively. Prove that

$$
G=\left\{a^{i} b^{j} \mid i \in\{0,1\} \text { and } j \in\{0, \ldots, n-1\}\right\} .
$$

Proof. Since $\operatorname{ord}(b)=n$, we know that $|\langle b\rangle|=n$, so that $[G:\langle b\rangle]=\frac{2 n}{n}=2$. That is, there are precisely two cosets of $\langle b\rangle$ in G. By Lagrange's Theorem, the fact that n is odd and ord $(a)=2$ tells us that $a \notin\langle b\rangle$, so the two cosets of $\langle b\rangle$ that partition G are:

- $\langle b\rangle=\left\{b^{0}, \ldots, b^{n-1}\right\}$ and
- $a\langle b\rangle=\left\{a b^{0}, \ldots, a b^{n-1}\right\}$.
(III) Suppose that G, H are groups and $\psi: G \rightarrow H$ is a homomorphism.
(a) Let's write $\psi(G)=\{\psi(g) \mid g \in G\}$. Prove that $\psi(G)$ is a subgroup of H.
(b) For J a subgroup of H, let's write $\psi^{-1}(J)=\{g \in G \mid \psi(g) \in J\}$. Prove that $\psi^{-1}(J)$ is a subgroup of G.

Proof. Let's write e_{G}, e_{H} for the identities of G, H, respectively.
(a) We must show three things.

- From class we know that $\psi\left(e_{G}\right)=e_{H}$, so that $e_{H} \in \psi(G)$ and $\psi(G) \neq \varnothing$.
- Suppose that $h_{1}, h_{2} \in \psi(G)$. Then there are $g_{1}, g_{2} \in G$ with $\psi\left(g_{1}\right)=h_{1}$ and $\psi\left(g_{2}\right)=h_{2}$. Since ψ is a homomorphism, we know that $h_{1} h_{2}=\psi\left(g_{1}\right) \psi\left(g_{2}\right)=\psi\left(g_{1} g_{2}\right) \in \psi(G)$.
- Finally, choose any $h \in \psi(G)$, so there is some $g \in G$ with $\psi(g)=h$. From class, we know that $h^{-1}=(\psi(g))^{-1}=\psi\left(g^{-1}\right) \in \psi(G)$.
(b) We must show three things.
- From class we know that $\psi\left(e_{G}\right)=e_{H} \in J$, so that $e_{G} \in \psi^{-1}(J)$ and $\psi^{-1}(J) \neq \varnothing$.
- Suppose that $g_{1}, g_{2} \in \psi^{-1}(J)$. Since ψ is a homomorphism and J is a subgroup, we know that $\psi\left(g_{1} g_{2}\right)=\psi\left(g_{1}\right) \psi\left(g_{2}\right) \in J$, so that $g_{1} g_{2} \in \psi^{-1}(J)$.
- Finally, choose any $g \in \psi^{-1}(J)$. From class, and since J is a subgroup, we know that $\psi\left(g^{-1}\right)=$ $(\psi(g))^{-1} \in J$, so that $g^{-1} \in \psi^{-1}(J)$.

