HW 7

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

- 1. Let $G = \mathbb{Z}_{20}$ and $H = \langle 15 \rangle$. Write down all elements of all (right) cosets of H in G.
- 2. Let $G = D_4$ and $H = \langle R \rangle$. Write down all elements of all (right) cosets of H in G.
- 3. For any group G and element $g \in G$, define the homomorphism

$$e_{G,g}: \mathbb{Z} \to G$$
$$n \mapsto g^n.$$

(No need to prove that $e_{G,g}$ is a homomorphism.) Let's write $e_{G,g}(\mathbb{Z}) = \{e_{G,g}(n) \mid n \in \mathbb{Z}\}$. Enumerate elements of $e_{G,g}(\mathbb{Z})$ and find ker $(e_{G,g})$ in the following situations:

- (a) $G = D_4, g = R$,
- (b) $G = \mathbb{Z}_{20}, g = 15,$
- (c) $G = D_4, g = F$.
- (d) $G = S_9, g = id_{\{1,2,3,4,5,6,7,8,9\}}.$

Proofs

(I) Let G be a group, let H be a subgroup of G, and let $a, b \in G$. Prove

Ha = Hb if and only if $ab^{-1} \in H$.

(II) Suppose n is a positive odd integer, that G is a group of order 2n, and that $a, b \in G$ have orders 2, n, respectively. Prove that

$$G = \{a^{i}b^{j} \mid i \in \{0, 1\} \text{ and } j \in \{0, \dots, n-1\}\}$$

- (III) Suppose that G, H are groups and $\psi: G \to H$ is a homomorphism.
 - (a) Let's write $\psi(G) = \{\psi(g) \mid g \in G\}$. Prove that $\psi(G)$ is a subgroup of H.
 - (b) For J a subgroup of H, let's write $\psi^{-1}(J) = \{g \in G \mid \psi(g) \in J\}$. Prove that $\psi^{-1}(J)$ is a subgroup of G.