
HW 6 Due: 22 May 2024

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a
good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Write down all the orders of all the elements of D4.

Solution. • I has order 1,

• R has order 4,

• R2 has order 2,

• R3 has order 1,

• F has order 2,

• FR has order 2,

• FR2 has order 2, and

• FR3 has order 2.

2. Write down all the orders of all the elements of S3 ×Z2.

Solution. Let ϵ = id{1,2,3}.

• (ϵ,0) has order 1,
• (ϵ,1) has order 2,
• ((12),0) has order 2,
• ((12),1) has order 2,
• ((13),0) has order 2,
• ((13),1) has order 2,
• ((23),0) has order 2,
• ((23),1) has order 2,
• ((123),0) has order 3,
• ((123),1) has order 6,
• ((132),0) has order 3, and
• ((132),1) has order 6.

3. Let f = (14563) ∈ S9. Write down all the orders of all the elements of ⟨f⟩.

Solution. Let’s write ϵ = id{1,2,3,4,5,6,7,8,9}. Since ord (f) = 5, we know from class that ⟨f⟩ is isomorphic

to Z5 and ⟨f⟩ = {ϵ, f, f2, f3, f4}. Moreover, ϵ has order 1, and f, f2, f3, f4 all have order 5.
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Proofs

(I) Let G be a group and suppose g, h ∈ G have finite order. Prove: if gh = hg, then ord (gh) is a divisor
of lcm (ord (g),ord (h)).

Proof. Let e be the identity of G and let m = lcm (ord (g),ord (h)), so there are a, b ∈ Z such that
m = aord (g) and m = bord (h). Now we use the fact that gh = hg to see that

(gh)m = gmhm = gaord (g)hbord (h) = (gord (g))
a
(hord (h))

b
= eaeb = e,

so by [?, Chapter 10, Theorem 5] we know that ord (gh) is a divisor of m.

(II) Suppose that G is a finite cyclic group of order n, with generator g ∈ G. Let j ∈ Z>0. Prove: if there
exist a, b ∈ Z with an + bj = 1, then G = ⟨gj⟩. (You can use [?, Chapter 10, Theorem 1].)

Proof. Let e be the identity of G. Since ⟨gj⟩ ⊆ G, we need only show that G ⊆ ⟨gj⟩. And since G = ⟨g⟩,
this means we must show g ∈ ⟨gj⟩. Since G is cyclic of order n, we know gn = e. Thus, we use [?,
Chapter 10, Theorem 1] to note that

(gj)b = gbj = eagbj = (gn)a gbj = gangbj = gan+bj = g1 = g,

so g ∈ ⟨gj⟩, as desired.

(III) Let m ∈ Z>0 and let J be any subgroup of Zm. Prove that if j is the smallest positive integer in J ,
then J = ⟨j⟩. (In particular: all subgroups of Zm are cyclic.)

Proof. Suppose that k ∈ J , and perform long division to obtain q, r ∈ Z≥0 such that

• k = qj + r and

• r < j.

Since J is a subgroup, we know −j ∈ J ; hence r = k+ q(−j) ∈ J . But j was the smallest positive integer
in J , so the fact that r < j tells us that r = 0. That is, k = qj ∈ J , as desired.

(IV) Suppose that G,H are groups and ϕ∶G→H is an isomorphism. Prove: for all g ∈ G,

ord (g) = ord (ϕ(g)).

Proof. Let eG, eH be the identity elements of G,H, respectively. Then by a fact from class, the
definition of order, and the definition of isomorphism, we see that

eH = ϕ (eG) = ϕ (gord (g)) = ϕ(g)ord (g),

so ord (ϕ(g)) ≤ ord (g). Now let’s suppose j ∈ {0,1, . . . ,ord (g) − 1}, and ϕ(g)j = eH ; we’d like to show
that j = 0. Well in this case, we see ϕ (gj) = ϕ(g)j = eH = ϕ (eG), so by the injectivity of ϕ we deduce

that gj = eG. But hey, we assumed that j < ord (g)! This means that j = 0, as desired.

(V) Let F be the set of all functions with domain and codomain R. Define ∼ on F by setting for all f, g ∈ F :

f ∼ g if and only if f(0) = g(0).

Prove that ∼ is an equivalence relation on F .

Proof. • Suppose that f ∈ F . Certainly f(0) = f(0), so that f ∼ f and we see that ∼ is reflexive.

• Suppose that f, g ∈ F and f ∼ g. Then f(0) = g(0) by definition of ∼, so then g(0) = f(0) and we
see that g ∼ f ; that is, we see that ∼ is symmetric.

• Finally, suppose that f, g, h ∈ F and that f ∼ g and g ∼ h. Then f(0) = g(0) and g(0) = h(0), so
that f(0) = h(0). That is, we see f ∼ h, so that ∼ is transitive.
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