As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Write down all the orders of all the elements of D_{4}.

Solution. - I has order 1,

- R has order 4,
- R^{2} has order 2 ,
- R^{3} has order 1 ,
- F has order 2,
- $F R$ has order 2,
- $F R^{2}$ has order 2 , and
- $F R^{3}$ has order 2.

2. Write down all the orders of all the elements of $S_{3} \times \mathbb{Z}_{2}$.

Solution. Let $\epsilon=\mathrm{id}_{\{1,2,3\}}$.

- $(\epsilon, 0)$ has order 1 ,
- $(\epsilon, 1)$ has order 2 ,
- ($(12), 0)$ has order 2 ,
- $((12), 1)$ has order 2 ,
- $((13), 0)$ has order 2 ,
- $((13), 1)$ has order 2 ,
- $((23), 0)$ has order 2 ,
- $((23), 1)$ has order 2 ,
- ((123), 0) has order 3,
- $((123), 1)$ has order 6 ,
- $((132), 0)$ has order 3 , and
- $((132), 1)$ has order 6.

3. Let $f=(14563) \in S_{9}$. Write down all the orders of all the elements of $\langle f\rangle$.

Solution. Let's write $\epsilon=\operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}}$. Since ord $(f)=5$, we know from class that $\langle f\rangle$ is isomorphic to \mathbb{Z}_{5} and $\langle f\rangle=\left\{\epsilon, f, f^{2}, f^{3}, f^{4}\right\}$. Moreover, ϵ has order 1 , and f, f^{2}, f^{3}, f^{4} all have order 5.

Proofs

(I) Let G be a group and suppose $g, h \in G$ have finite order. Prove: if $g h=h g$, then ord $(g h)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.

Proof. Let e be the identity of G and let $m=\operatorname{lcm}(\operatorname{ord}(g)$, ord $(h))$, so there are $a, b \in \mathbb{Z}$ such that $m=a$ ord (g) and $m=b \operatorname{ord}(h)$. Now we use the fact that $g h=h g$ to see that

$$
(g h)^{m}=g^{m} h^{m}=g^{a \operatorname{ord}(g)} h^{b \operatorname{ord}(h)}=\left(g^{\operatorname{ord}(g)}\right)^{a}\left(h^{\operatorname{ord}(h)}\right)^{b}=e^{a} e^{b}=e,
$$

so by [?, Chapter 10, Theorem 5] we know that ord $(g h)$ is a divisor of m.
(II) Suppose that G is a finite cyclic group of order n, with generator $g \in G$. Let $j \in \mathbb{Z}_{>0}$. Prove: if there exist $a, b \in \mathbb{Z}$ with $a n+b j=1$, then $G=\left\langle g^{j}\right\rangle$. (You can use [?, Chapter 10, Theorem 1].)

Proof. Let e be the identity of G. Since $\left\langle g^{j}\right\rangle \subseteq G$, we need only show that $G \subseteq\left\langle g^{j}\right\rangle$. And since $G=\langle g\rangle$, this means we must show $g \in\left\langle g^{j}\right\rangle$. Since G is cyclic of order n, we know $g^{n}=e$. Thus, we use [?, Chapter 10, Theorem 1] to note that

$$
\left(g^{j}\right)^{b}=g^{b j}=e^{a} g^{b j}=\left(g^{n}\right)^{a} g^{b j}=g^{a n} g^{b j}=g^{a n+b j}=g^{1}=g,
$$

so $g \in\left\langle g^{j}\right\rangle$, as desired.
(III) Let $m \in \mathbb{Z}_{>0}$ and let J be any subgroup of \mathbb{Z}_{m}. Prove that if j is the smallest positive integer in J, then $J=\langle j\rangle$. (In particular: all subgroups of \mathbb{Z}_{m} are cyclic.)

Proof. Suppose that $k \in J$, and perform long division to obtain $q, r \in \mathbb{Z}_{\geq 0}$ such that

- $k=q j+r$ and
- $r<j$.

Since J is a subgroup, we know $-j \in J$; hence $r=k+q(-j) \in J$. But j was the smallest positive integer in J, so the fact that $r<j$ tells us that $r=0$. That is, $k=q j \in J$, as desired.
(IV) Suppose that G, H are groups and $\phi: G \rightarrow H$ is an isomorphism. Prove: for all $g \in G$,

$$
\operatorname{ord}(g)=\operatorname{ord}(\phi(g)) .
$$

Proof. Let e_{G}, e_{H} be the identity elements of G, H, respectively. Then by a fact from class, the definition of order, and the definition of isomorphism, we see that

$$
e_{H}=\phi\left(e_{G}\right)=\phi\left(g^{\operatorname{ord}(g)}\right)=\phi(g)^{\operatorname{ord}(g)},
$$

so ord $(\phi(g)) \leq \operatorname{ord}(g)$. Now let's suppose $j \in\{0,1, \ldots, \operatorname{ord}(g)-1\}$, and $\phi(g)^{j}=e_{H}$; we'd like to show that $j=0$. Well in this case, we see $\phi\left(g^{j}\right)=\phi(g)^{j}=e_{H}=\phi\left(e_{G}\right)$, so by the injectivity of ϕ we deduce that $g^{j}=e_{G}$. But hey, we assumed that $j<\operatorname{ord}(g)!$ This means that $j=0$, as desired.
(V) Let \mathcal{F} be the set of all functions with domain and codomain \mathbb{R}. Define \sim on \mathcal{F} by setting for all $f, g \in \mathcal{F}$:

$$
f \sim g \quad \text { if and only if } \quad f(0)=g(0)
$$

Prove that \sim is an equivalence relation on \mathcal{F}.
Proof. - Suppose that $f \in \mathcal{F}$. Certainly $f(0)=f(0)$, so that $f \sim f$ and we see that \sim is reflexive.

- Suppose that $f, g \in \mathcal{F}$ and $f \sim g$. Then $f(0)=g(0)$ by definition of \sim, so then $g(0)=f(0)$ and we see that $g \sim f$; that is, we see that \sim is symmetric.
- Finally, suppose that $f, g, h \in \mathcal{F}$ and that $f \sim g$ and $g \sim h$. Then $f(0)=g(0)$ and $g(0)=h(0)$, so that $f(0)=h(0)$. That is, we see $f \sim h$, so that \sim is transitive.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

