HW 6

Due: 22 May 2024

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. Write down all the orders of all the elements of D_4 .

Solution. • I has order 1,

- R has order 4,
- R^2 has order 2,
- R^3 has order 1,
- F has order 2,
- FR has order 2,
- FR^2 has order 2, and
- FR^3 has order 2.

2. Write down all the orders of all the elements of $S_3 \times \mathbb{Z}_2$.

Solution. Let $\epsilon = id_{\{1,2,3\}}$.

- $(\epsilon, 0)$ has order 1,
- $(\epsilon, 1)$ has order 2,
- ((12), 0) has order 2,
- ((12), 1) has order 2,
- ((13), 0) has order 2,
- ((13), 1) has order 2,
- ((23),0) has order 2,
- ((23), 1) has order 2,
- ((123),0) has order 3,
- ((123), 1) has order 6,
- ((132),0) has order 3, and
- ((132), 1) has order 6.

3. Let $f = (14563) \in S_9$. Write down all the orders of all the elements of $\langle f \rangle$.

Solution. Let's write $\epsilon = \operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}}$. Since $\operatorname{ord}(f) = 5$, we know from class that $\langle f \rangle$ is isomorphic to \mathbb{Z}_5 and $\langle f \rangle = \{\epsilon, f, f^2, f^3, f^4\}$. Moreover, ϵ has order 1, and f, f^2, f^3, f^4 all have order 5.

Proofs

(I) Let G be a group and suppose $g, h \in G$ have finite order. Prove: if gh = hg, then $\operatorname{ord}(gh)$ is a divisor of lcm $(\operatorname{ord}(g), \operatorname{ord}(h))$.

Proof. Let e be the identity of G and let $m = \operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$, so there are $a, b \in \mathbb{Z}$ such that $m = a \operatorname{ord}(g)$ and $m = b \operatorname{ord}(h)$. Now we use the fact that gh = hg to see that

$$(gh)^m = g^m h^m = g^{a \operatorname{ord}(g)} h^{b \operatorname{ord}(h)} = (g^{\operatorname{ord}(g)})^a (h^{\operatorname{ord}(h)})^b = e^a e^b = e,$$

so by [?, Chapter 10, Theorem 5] we know that $\operatorname{ord}(gh)$ is a divisor of m.

(II) Suppose that G is a finite cyclic group of order n, with generator $g \in G$. Let $j \in \mathbb{Z}_{>0}$. Prove: if there exist $a, b \in \mathbb{Z}$ with an + bj = 1, then $G = \langle g^j \rangle$. (You can use [?, Chapter 10, Theorem 1].)

Proof. Let e be the identity of G. Since $\langle g^j \rangle \subseteq G$, we need only show that $G \subseteq \langle g^j \rangle$. And since $G = \langle g \rangle$, this means we must show $g \in \langle g^j \rangle$. Since G is cyclic of order n, we know $g^n = e$. Thus, we use [?, Chapter 10, Theorem 1] to note that

$$(g^{j})^{b} = g^{bj} = e^{a}g^{bj} = (g^{n})^{a}g^{bj} = g^{an}g^{bj} = g^{an+bj} = g^{1} = g,$$

so $g \in \langle g^j \rangle$, as desired.

(III) Let $m \in \mathbb{Z}_{>0}$ and let J be any subgroup of \mathbb{Z}_m . Prove that if j is the smallest positive integer in J, then $J = \langle j \rangle$. (In particular: all subgroups of \mathbb{Z}_m are cyclic.)

Proof. Suppose that $k \in J$, and perform long division to obtain $q, r \in \mathbb{Z}_{\geq 0}$ such that

- k = qj + r and
- *r* < *j*.

Since J is a subgroup, we know $-j \in J$; hence $r = k + q(-j) \in J$. But j was the smallest positive integer in J, so the fact that r < j tells us that r = 0. That is, $k = qj \in J$, as desired.

(IV) Suppose that G, H are groups and $\phi: G \to H$ is an isomorphism. Prove: for all $g \in G$,

$$\operatorname{ord}(g) = \operatorname{ord}(\phi(g)).$$

Proof. Let e_G, e_H be the identity elements of G, H, respectively. Then by a fact from class, the definition of order, and the definition of isomorphism, we see that

$$e_H = \phi(e_G) = \phi(g^{\operatorname{ord}(g)}) = \phi(g)^{\operatorname{ord}(g)}$$

so $\operatorname{ord}(\phi(g)) \leq \operatorname{ord}(g)$. Now let's suppose $j \in \{0, 1, \dots, \operatorname{ord}(g) - 1\}$, and $\phi(g)^j = e_H$; we'd like to show that j = 0. Well in this case, we see $\phi(g^j) = \phi(g)^j = e_H = \phi(e_G)$, so by the injectivity of ϕ we deduce that $g^j = e_G$. But hey, we assumed that $j < \operatorname{ord}(g)$! This means that j = 0, as desired.

(V) Let \mathcal{F} be the set of all functions with domain and codomain \mathbb{R} . Define ~ on \mathcal{F} by setting for all $f, g \in \mathcal{F}$:

$$f \sim g$$
 if and only if $f(0) = g(0)$.

Prove that \sim is an equivalence relation on \mathcal{F} .

• Suppose that $f \in \mathcal{F}$. Certainly f(0) = f(0), so that $f \sim f$ and we see that \sim is reflexive.

- Suppose that $f, g \in \mathcal{F}$ and $f \sim g$. Then f(0) = g(0) by definition of \sim , so then g(0) = f(0) and we see that $g \sim f$; that is, we see that \sim is symmetric.
- Finally, suppose that $f, g, h \in \mathcal{F}$ and that $f \sim g$ and $g \sim h$. Then f(0) = g(0) and g(0) = h(0), so that f(0) = h(0). That is, we see $f \sim h$, so that \sim is transitive.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284