As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Write down all the orders of all the elements of D_{4}.
2. Write down all the orders of all the elements of $S_{3} \times \mathbb{Z}_{2}$.
3. Let $f=(14563) \in S_{9}$. Write down all the orders of all the elements of $\langle f\rangle$.

Proofs

(I) Let G be a group and suppose $g, h \in G$ have finite order. Prove: if $g h=h g$, then ord $(g h)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.
(II) Suppose that G is a finite cyclic group of order n, with generator $g \in G$. Let $j \in \mathbb{Z}_{>0}$. Prove: if there exist $a, b \in \mathbb{Z}$ with $a n+b j=1$, then $G=\left\langle g^{j}\right\rangle$. (You can use [Pin10, Chapter 10, Theorem 1].)
(III) Let $m \in \mathbb{Z}_{>0}$ and let J be any subgroup of \mathbb{Z}_{m}. Prove that if j is the smallest positive integer in J, then $J=\langle j\rangle$. (In particular: all subgroups of \mathbb{Z}_{m} are cyclic.)
(IV) Suppose that G, H are groups and $\phi: G \rightarrow H$ is an isomorphism. Prove: for all $g \in G$,

$$
\operatorname{ord}(g)=\operatorname{ord}(\phi(g)) .
$$

(V) Let \mathcal{F} be the set of all functions with domain and codomain \mathbb{R}. Define \sim on \mathcal{F} by setting for all $f, g \in \mathcal{F}$:

$$
f \sim g \quad \text { if and only if } \quad f(0)=g(0)
$$

Prove that \sim is an equivalence relation on \mathcal{F}.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

