HW 6

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

- 1. Write down all the orders of all the elements of D_4 .
- 2. Write down all the orders of all the elements of $S_3 \times \mathbb{Z}_2$.
- 3. Let $f = (14563) \in S_9$. Write down all the orders of all the elements of $\langle f \rangle$.

Proofs

- (I) Let G be a group and suppose $g, h \in G$ have finite order. Prove: if gh = hg, then $\operatorname{ord}(gh)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.
- (II) Suppose that G is a finite cyclic group of order n, with generator $g \in G$. Let $j \in \mathbb{Z}_{>0}$. Prove: if there exist $a, b \in \mathbb{Z}$ with an + bj = 1, then $G = \langle g^j \rangle$. (You can use [Pin10, Chapter 10, Theorem 1].)
- (III) Let $m \in \mathbb{Z}_{>0}$ and let J be any subgroup of \mathbb{Z}_m . Prove that if j is the smallest positive integer in J, then $J = \langle j \rangle$. (In particular: all subgroups of \mathbb{Z}_m are cyclic.)
- (IV) Suppose that G, H are groups and $\phi: G \to H$ is an isomorphism. Prove: for all $g \in G$,

$$\operatorname{ord}(g) = \operatorname{ord}(\phi(g))$$

(V) Let \mathcal{F} be the set of all functions with domain and codomain \mathbb{R} . Define ~ on \mathcal{F} by setting for all $f, g \in \mathcal{F}$:

$$f \sim g$$
 if and only if $f(0) = g(0)$.

Prove that \sim is an equivalence relation on \mathcal{F} .

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284