HW 5 Solutions

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Write down all the orders of all the elements of D_{4}.

Solution. - I has order 1,

- R has order 4,
- R^{2} has order 2 ,
- R^{3} has order 1 ,
- F has order 2,
- $F R$ has order 2 ,
- $F R^{2}$ has order 2 , and
- $F R^{3}$ has order 2.

2. Write down all the orders of all the elements of $S_{3} \times \mathbb{Z}_{2}$.

Solution. Let $\epsilon=\mathrm{id}_{\{1,2,3\}}$.

- $(\epsilon, 0)$ has order 1 ,
- $(\epsilon, 1)$ has order 2 ,
- $((12), 0)$ has order 2 ,
- ($(12), 1)$ has order 2 ,
- ($(13), 0)$ has order 2 ,
- ($(13), 1)$ has order 2 ,
- $((23), 0)$ has order 2 ,
- $((23), 1)$ has order 2 ,
- $((123), 0)$ has order 3 ,
- $((123), 1)$ has order 6 ,
- $((132), 0)$ has order 3 , and
- $((132), 1)$ has order 6 .

3. Let $f=(14563) \in S_{9}$. Write down all the orders of all the elements of $\langle f\rangle$.

Solution. Let's write $\epsilon=\operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}}$. Since ord $(f)=5$, we know from class that $\langle f\rangle$ is isomorphic to \mathbb{Z}_{5} and $\langle f\rangle=\left\{\epsilon, f, f^{2}, f^{3}, f^{4}\right\}$. Moreover, ϵ has order 1 , and f, f^{2}, f^{3}, f^{4} all have order 5 .

Proofs

1. Let G be a group and suppose $g, h \in G$ have finite order. Prove: if $g h=h g$, then ord $(g h)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.

Proof. Let e be the identity of G and let $m=\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$, so there are $a, b \in \mathbb{Z}$ such that $m=a \operatorname{ord}(g)$ and $m=b \operatorname{ord}(h)$. Now we use the fact that $g h=h g$ to see that

$$
(g h)^{m}=g^{m} h^{m}=g^{a \operatorname{ord}(g)} h^{b \operatorname{ord}(h)}=\left(g^{\operatorname{ord}(g)}\right)^{a}\left(h^{\operatorname{ord}(h)}\right)^{b}=e^{a} e^{b}=e,
$$

so by [Pin10, Chapter 10, Theorem 5] we know that ord $(g h)$ is a divisor of m.
2. Let G be a group, and define

$$
D=\{(g, g) \mid g \in G\} .
$$

Assume that D is a subgroup of $G \times G .{ }^{1}$ Prove that G is isomorphic to D.
Proof. Define

$$
\begin{aligned}
\phi: G & \rightarrow D \\
& g
\end{aligned}>(g, g) .
$$

- To see that ϕ is surjective, choose any $g \in G$, so that $(g, g) \in D$ is arbitrary. But then we see $\phi(g)=(g, g)$.
- To see that ϕ is injective, choose any $g, h \in G$ and assume that $\phi(g)=\phi(h)$. But then $(g, g)=\phi(g)=$ $\phi(h)=(h, h)$, so that $g=h$.
- To see that ϕ respects the operations of G, D, choose any $g, h \in G$ and note that $\phi(g h)=(g h, g h)=$ $(g, g)(h, h)=\phi(g) \phi(h)$.

3. Suppose that G, H are groups and $\phi: G \rightarrow H$ is an isomorphism. Prove: for all $g \in G$,

$$
\operatorname{ord}(g)=\operatorname{ord}(\phi(g)) .
$$

Proof. Let e_{G}, e_{H} be the identity elements of G, H, respectively. Then by a fact from class, the definition of order, and the definition of isomorphism, we see that

$$
e_{H}=\phi\left(e_{G}\right)=\phi\left(g^{\operatorname{ord}(g)}\right)=\phi(g)^{\operatorname{ord}(g)},
$$

so ord $(\phi(g)) \leq \operatorname{ord}(g)$. Now let's suppose $j \in\{0,1, \ldots$, ord $(g)-1\}$, and $\phi(g)^{j}=e_{H}$; we'd like to show that $j=0$. Well in this case, we see $\phi\left(g^{j}\right)=\phi(g)^{j}=e_{H}=\phi\left(e_{G}\right)$, so by the injectivity of ϕ we deduce that $g^{j}=e_{H}$. But hey, we assumed that $j<\operatorname{ord}(g)$! This means that $j=0$, as desired.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

[^0]
[^0]: ${ }^{1}$ This is always true and in principle, we could prove it. However, I'm not requiring a proof. At this time.

