HW 5 Solutions

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

1. Write down all the orders of all the elements of D_4 .

Solution. • I has order 1,

- R has order 4,
- R^2 has order 2,
- R^3 has order 1,
- F has order 2,
- FR has order 2,
- FR^2 has order 2, and
- FR^3 has order 2.

2. Write down all the orders of all the elements of $S_3 \times \mathbb{Z}_2$.

Solution. Let $\epsilon = id_{\{1,2,3\}}$.

- $(\epsilon, 0)$ has order 1,
- $(\epsilon, 1)$ has order 2,
- ((12),0) has order 2,
- ((12), 1) has order 2,
- ((13),0) has order 2,
- ((13), 1) has order 2,
- ((23),0) has order 2,
- ((23),1) has order 2,
- ((123),0) has order 3,
- ((123), 1) has order 6,
- ((132),0) has order 3, and
- ((132), 1) has order 6.

3. Let $f = (14563) \in S_9$. Write down all the orders of all the elements of $\langle f \rangle$.

Solution. Let's write $\epsilon = \operatorname{id}_{\{1,2,3,4,5,6,7,8,9\}}$. Since $\operatorname{ord}(f) = 5$, we know from class that $\langle f \rangle$ is isomorphic to \mathbb{Z}_5 and $\langle f \rangle = \{\epsilon, f, f^2, f^3, f^4\}$. Moreover, ϵ has order 1, and f, f^2, f^3, f^4 all have order 5.

Proofs

1. Let G be a group and suppose $g, h \in G$ have finite order. Prove: if gh = hg, then $\operatorname{ord}(gh)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.

Proof. Let e be the identity of G and let $m = \operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$, so there are $a, b \in \mathbb{Z}$ such that $m = a \operatorname{ord}(g)$ and $m = b \operatorname{ord}(h)$. Now we use the fact that gh = hg to see that

$$(gh)^{m} = g^{m}h^{m} = g^{a \operatorname{ord}(g)}h^{b \operatorname{ord}(h)} = (g^{\operatorname{ord}(g)})^{a}(h^{\operatorname{ord}(h)})^{b} = e^{a}e^{b} = e,$$

so by [Pin10, Chapter 10, Theorem 5] we know that $\operatorname{ord}(gh)$ is a divisor of m.

2. Let G be a group, and define

$$D = \{(g,g) \mid g \in G\}$$

Assume that D is a subgroup of $G \times G$.¹ Prove that G is isomorphic to D.

Proof. Define

$$\phi: G \to D$$
$$g \mapsto (g, g)$$

- To see that ϕ is surjective, choose any $g \in G$, so that $(g,g) \in D$ is arbitrary. But then we see $\phi(g) = (g,g)$.
- To see that ϕ is injective, choose any $g, h \in G$ and assume that $\phi(g) = \phi(h)$. But then $(g, g) = \phi(g) = \phi(h) = (h, h)$, so that g = h.
- To see that ϕ respects the operations of G, D, choose any $g, h \in G$ and note that $\phi(gh) = (gh, gh) = (g, g)(h, h) = \phi(g)\phi(h)$.
- 3. Suppose that G, H are groups and $\phi: G \to H$ is an isomorphism. Prove: for all $g \in G$,

$$\operatorname{ord}(g) = \operatorname{ord}(\phi(g)).$$

Proof. Let e_G, e_H be the identity elements of G, H, respectively. Then by a fact from class, the definition of order, and the definition of isomorphism, we see that

$$e_H = \phi(e_G) = \phi(g^{\operatorname{ord}(g)}) = \phi(g)^{\operatorname{ord}(g)}$$

so ord $(\phi(g)) \leq$ ord (g). Now let's suppose $j \in \{0, 1, \dots, \text{ord } (g) - 1\}$, and $\phi(g)^j = e_H$; we'd like to show that j = 0. Well in this case, we see $\phi(g^j) = \phi(g)^j = e_H = \phi(e_G)$, so by the injectivity of ϕ we deduce that $g^j = e_H$. But hey, we assumed that j < ord (g)! This means that j = 0, as desired.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

¹This is always true and in principle, we could prove it. However, I'm not requiring a proof. At this time.