HW 5

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

Computations

- 1. Write down all the orders of all the elements of D_4 .
- 2. Write down all the orders of all the elements of $S_3 \times \mathbb{Z}_2$.
- 3. Let $f = (14563) \in S_9$. Write down all the orders of all the elements of $\langle f \rangle$.

Proofs

- (I) Let G be a group and suppose $g, h \in G$ have finite order. Prove: if gh = hg, then $\operatorname{ord}(gh)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.
- (II) Let G be a group, and define

$$D = \{(g,g) \mid g \in G\}.$$

Assume that D is a subgroup of $G \times G$.¹ Prove that G is isomorphic to D.

(III) Suppose that G, H are groups and $\phi: G \to H$ is an isomorphism. Prove: for all $g \in G$,

 $\operatorname{ord}(g) = \operatorname{ord}(\phi(g)).$

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

¹This is always true and in principle, we could prove it. However, I'm not requiring a proof. At this time.