As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

Computations

1. Write down all the orders of all the elements of D_{4}.
2. Write down all the orders of all the elements of $S_{3} \times \mathbb{Z}_{2}$.
3. Let $f=(14563) \in S_{9}$. Write down all the orders of all the elements of $\langle f\rangle$.

Proofs

(I) Let G be a group and suppose $g, h \in G$ have finite order. Prove: if $g h=h g$, then ord $(g h)$ is a divisor of $\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.
(II) Let G be a group, and define

$$
D=\{(g, g) \mid g \in G\} .
$$

Assume that D is a subgroup of $G \times G .{ }^{1}$ Prove that G is isomorphic to D.
(III) Suppose that G, H are groups and $\phi: G \rightarrow H$ is an isomorphism. Prove: for all $g \in G$,

$$
\operatorname{ord}(g)=\operatorname{ord}(\phi(g)) .
$$

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

[^0]
[^0]: ${ }^{1}$ This is always true and in principle, we could prove it. However, I'm not requiring a proof. At this time.

