HW 4 Solutions

1 Computations

- 1. Consider the function $g \in S_4$ given by
- $1 \mapsto 2$ $2 \mapsto 1$ $3 \mapsto 3$ $4 \mapsto 4.$

Write down all functions $f \in S_4$ with the property that

- (a) $f \circ f \circ f = id_A$,
- (b) $f \circ g = g \circ f$,
- (c) $f \circ g = id_{\{1,2,3,4\}}$.
- (d) $f(1) \in \{1, 2\}$ and $f(2) \in \{1, 2\}$.

Solution. I will use the very-convenient cycle notation from Chapter 8 of [Pin10].

(a) id_A, (123), (132), (134), (143), (234), (243).
(b) id_A, (12), (12)(34), (34).
(c) (12).
(d) id_A, (12), (12)(34), (34).

2. How many elements (f,g) in $S_3 \times S_3$ are there that satisfy $(f,g)(f,g)(f,g) = (\operatorname{id}_{\{1,2,3\}}, \operatorname{id}_{\{1,2,3\}})?$

Solution. There are 9 such elements:

$\left(\mathrm{id}_{\{1,2,3\}},\mathrm{id}_{\{1,2,3\}}\right),$	$\left(\mathrm{id}_{\{1,2,3\}},(123)\right),$	$\left(\mathrm{id}_{\{1,2,3\}},(132)\right),$
$((123), \mathrm{id}_{\{1,2,3\}}),$	((123),(123)),	((123),(132)),
$((132), \mathrm{id}_{\{1,2,3\}}),$	((132),(123)),	((132),(132)).

2 Proofs

(I) Let A be a set and B any *finite* subset of A. Define

$$G = \{ f \in S_A \mid \text{for all } b \in B, f(b) \in B \}.$$

Prove that G is a subgroup of S_A .

Proof. • Since $id_A \in G$, we see that *G* ≠ Ø.

- Choose $f, g \in G$. To see that $f \circ g \in B$, choose any $b \in B$. Since $g \in G$, we know that $g(b) \in B$; and since $f \in G$, we know that $f(g(b)) \in B$. Thus, we see that $f \circ g \in G$ by the definition of G.
- Finally, suppose that $f \in G$. To see that $f^{-1} \in B$, choose any $b \in B$. If there were no $b_0 \in B$ with $f(b_0) = b$, then we would use the finiteness of B to see that f assigns the |B| pigeons living in B to only |B| 1 pigeon holes. But then the pigeon hole principle would tell us that f is not one-to-one, which is impossible. Thus, there is some b_0 with $f(b_0) = b$. But this tells us that $f^{-1}(b) = b_0 \in B$, so that $f^{-1} \in G$ by definition of G.

(II) Define the set

$$G = \{ f \in S_5 \mid f(2) = 3 \}.$$

Is G a subgroup of S_5 ? Prove your answer is correct.

Proof. By a lemma from class we know any subgroup of S_5 contains $id_{\{1,2,3,4,5\}}$. But

$$\operatorname{id}_{\{1,2,3,4,5\}}(2) = 2 \neq 3,$$

so $id_{\{1,2,3,4,5\}} \notin G$. Thus, we conclude that G is not a subgroup of S_5 .

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284