HW 4 Solutions

1 Computations

1. Consider the function $g \in S_{4}$ given by

$$
\begin{aligned}
& 1 \mapsto 2 \\
& 2 \mapsto 1 \\
& 3 \mapsto 3 \\
& 4 \mapsto 4 .
\end{aligned}
$$

Write down all functions $f \in S_{4}$ with the property that
(a) $f \circ f \circ f=\mathrm{id}_{A}$,
(b) $f \circ g=g \circ f$,
(c) $f \circ g=\operatorname{id}_{\{1,2,3,4\}}$.
(d) $f(1) \in\{1,2\}$ and $f(2) \in\{1,2\}$.

Solution. I will use the very-convenient cycle notation from Chapter 8 of [Pin10].
(a) $\operatorname{id}_{A},(123),(132),(134),(143),(234),(243)$.
(b) $\operatorname{id}_{A},(12),(12)(34),(34)$.
(c) (12).
(d) $\operatorname{id}_{A},(12),(12)(34),(34)$.
2. How many elements (f, g) in $S_{3} \times S_{3}$ are there that satisfy $(f, g)(f, g)(f, g)=\left(\operatorname{id}_{\{1,2,3\}}, \operatorname{id}_{\{1,2,3\}}\right)$?

Solution. There are 9 such elements:

$$
\begin{array}{lll}
\left(\operatorname{id}_{\{1,2,3\}}, \operatorname{id}_{\{1,2,3\}}\right), & \left(\operatorname{id}_{\{1,2,3\}},(123)\right), & \left(\operatorname{id}_{\{1,2,3\}},(132)\right), \\
\left((123), \operatorname{id}_{\{1,2,3\}}\right), & ((123),(123)), & ((123),(132)), \\
\left((132), \operatorname{id}_{\{1,2,3\}}\right), & ((132),(123)), & ((132),(132))
\end{array}
$$

2 Proofs

(I) Let A be a set and B any finite subset of A. Define

$$
G=\left\{f \in S_{A} \mid \text { for all } b \in B, f(b) \in B\right\} .
$$

Prove that G is a subgroup of S_{A}.
Proof. - Since $\operatorname{id}_{A} \in G$, we see that $G \neq \varnothing$.

- Choose $f, g \in G$. To see that $f \circ g \in B$, choose any $b \in B$. Since $g \in G$, we know that $g(b) \in B$; and since $f \in G$, we know that $f(g(b)) \in B$. Thus, we see that $f \circ g \in G$ by the definition of G.
- Finally, suppose that $f \in G$. To see that $f^{-1} \in B$, choose any $b \in B$. If there were no $b_{0} \in B$ with $f\left(b_{0}\right)=b$, then we would use the finiteness of B to see that f assigns the $|B|$ pigeons living in B to only $|B|-1$ pigeon holes. But then the pigeon hole principle would tell us that f is not one-to-one, which is impossible. Thus, there is some b_{0} with $f\left(b_{0}\right)=b$. But this tells us that $f^{-1}(b)=b_{0} \in B$, so that $f^{-1} \in G$ by definition of G.
(II) Define the set

$$
G=\left\{f \in S_{5} \mid f(2)=3\right\} .
$$

Is G a subgroup of S_{5} ? Prove your answer is correct.

Proof. By a lemma from class we know any subgroup of $S_{5} \operatorname{contains}^{\operatorname{id}}{ }_{\{1,2,3,4,5\}}$. But

$$
\operatorname{id}_{\{1,2,3,4,5\}}(2)=2 \neq 3,
$$

so $\operatorname{id}_{\{1,2,3,4,5\}} \notin G$. Thus, we conclude that G is not a subgroup of S_{5}.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

