1 Computations

1. Write down every subgroup of \mathbb{Z}_{5}. (You can use "generator" notation. For example, $\langle 1\rangle=\{0,1,2,3,4\}$.)
2. Write down every subgroup of \mathbb{Z}_{10}.
3. Write down every subgroup of \mathbb{Z}_{70}.
4. Do you have a conjecture about the number of subgroups of cyclic groups?
5. How many surjective functions are there from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to \mathbb{Z}_{2} ? How many injective functions?

Solutions. 1. Subgroups are: $\langle 0\rangle$ and $\langle 1\rangle$.
2. Subgroups are: $\langle 0\rangle,\langle 5\rangle,\langle 2\rangle$, and $\langle 1\rangle$.
3. Subgroups are: $\langle 0\rangle,\langle 35\rangle,\langle 14\rangle,\langle 10\rangle,\langle 7\rangle,\langle 5\rangle,\langle 2\rangle$, and $\langle 1\rangle$.
4. For any positive integer n, the subgroups of \mathbb{Z}_{n} are in one-to-one correspondence with the (positive integer) divisors of n.
5. There are 14 surjective functions (the only two nonsurjective functions out of the 16 total functions are: the one that maps everything to 0 and the one that maps everything to 1) and 0 injective functions.

2 Proofs

(I) Let G, H be groups with identities, e_{G}, e_{H}, respectively. Prove that $\left\{\left(e_{G}, h\right) \mid h \in H\right\}$ is a subgroup of $G \times H$. (A similar proof shows that $\left\{\left(g, e_{H}\right) \mid g \in G\right\}$ is a subgroup of $G \times H$, but you don't need to write this up.)
(II) Let G be a group, and define

$$
C=\{g \in G \mid \text { for all } x \in G, x g=g x\}
$$

Prove that C is a subgroup of G.
(III) Let G be a group, let H be a subgroup of G, and choose any $g \in G$. Prove that

$$
\left\{g h g^{-1} \mid h \in H\right\}
$$

is a subgroup of G.
Solutions. (I) Let's write K for $\left\{\left(e_{G}, h\right) \mid h \in H\right\}$.

- Since $\left(e_{G}, e_{H}\right) \in K$, we see $K \neq \varnothing$.
- Choose any $\left(e_{G}, h_{1}\right),\left(e_{G}, h_{2}\right) \in K$, then note that

$$
\left(e_{G}, h_{1}\right)\left(e_{G}, h_{2}\right)=\left(e_{G} e_{G}, h_{1} h_{2}\right)=\left(e_{G}, h_{1} h_{2}\right) \in K
$$

- Finally, if we choose any $\left(e_{G}, h\right) \in K$, we recall that the inverse of $\left(e_{G}, h\right)$ is $\left(e_{G}, h^{-1}\right)$; and $\left(e_{G}, h^{-1}\right)$ is in K by definition of K.

Thus, we see that K is a subgroup of $G \times H$ by the subgroup test.
(II) Let's write e for the identity element of G.

- By the definition of identity element, we know that for any $g \in G$, we have $e g=g e=g$, so that $e \in C$ by definition. In particular, we see $C \neq \varnothing$.
- Choose any $g, h \in C$. To show that $g h \in C$, choose any $x \in C$ and note that associativity and the definition of C tell us:

$$
x(g h)=(x g) h=(g x) h=g(x h)=g(h x)=(g h) x
$$

so $g h \in C$.

- Finally choose any $g \in C$. To show $g^{-1} \in C$, we choose any $x \in G$ and use Shoes and Socks and the definition of C to compute

$$
x g^{-1}=\left(g x^{-1}\right)^{-1}=\left(x^{-1} g\right)^{-1}=g^{-1} x
$$

Thus, we see $g^{-1} \in C$. Could we have done this without Shoes and Socks? Yes! "Use the fact that G is a group and the definition of C to compute

$$
x g^{-1}=e\left(x g^{-1}\right)=\left(g^{-1} g\right)\left(x g^{-1}\right)=g^{-1}(g x) g^{-1}=g^{-1}(x g) g^{-1}=\left(g^{-1} x\right)\left(g g^{-1}\right)=\left(g^{-1} x\right) e=g^{-1} x
$$

so $g^{-1} \in C$."
(III) Like normal, we'll write e for the identity of G and we'll apply the subgroup test. We'll write $g H g^{-1}$ for $\left\{g h g^{-1} \mid h \in H\right\}$

- We know from class that $e \in H$ since H is a subgroup. Then $e=g g^{-1}=g e g^{-1} \in g H g^{-1}$ by the definition of $g H^{-1}$.
- Suppose that $g h_{1} g^{-1}, g h_{2} g^{-1} \in g H g^{-1}$. Since H is a subgroup, we know $h_{1} h_{2} \in H$, so

$$
\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g h_{1}\left(g^{-1} g\right) h_{2} g^{-1}=g h_{1}(e) h_{2} g^{-1}=g\left(h_{1} h_{2}\right) g^{-1} \in g H g^{-1}
$$

- Finally, choose any $g h g^{-1} \in g H g^{-1}$. Since H is a subgroup, we know $h^{-1} \in H$, so

$$
g h g^{-1}\left(g h^{-1} g^{-1}\right)=g h\left(g^{-1} g\right) h^{-1} g^{-1}=g\left(h h^{-1}\right) g^{-1}=g(e) g^{-1}=g g^{-1}=e
$$

we see that

$$
\left(g h g^{-1}\right)^{-1}=g h^{-1} g^{-1} \in g H g^{-1}
$$

Here we used the fact from class again. That is, we deduced that (\dagger) was true by computing $g h g^{-1}\left(g h^{-1} g^{-1}\right)$ without needing to compute $\left(g h^{-1} g^{-1}\right) g h g^{-1}$.

