1 Computations

1. Write down every element of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and write down its inverse. (For one example, note that the element $(0,0)$ has inverse $-(0,0)=(0,0)$.)
2. Write down every multiple of $(1,1)$ in the group $\mathbb{Z}_{6} \times \mathbb{Z}_{3}$.
3. Write down three elements (a, b) of $\mathbb{Z}_{6} \times \mathbb{Z}_{3}$ with the property

$$
|\{n(a, b) \mid n \in \mathbb{Z}\}|=3
$$

Solution. 1. - $(0,0)$ has inverse $-(0,0)=(0,0)$,

- $(1,0)$ has inverse $-(1,0)=(2,0)$,
- $(2,0)$ has inverse $-(2,0)=(1,0)$,
- $(0,1)$ has inverse $-(0,1)=(0,2)$,
- $(1,1)$ has inverse $-(1,1)=(2,2)$,
- $(2,1)$ has inverse $-(2,1)=(1,2)$,
- $(0,2)$ has inverse $-(0,2)=(0,1)$,
- $(1,2)$ has inverse $-(1,2)=(2,1)$, and
- $(2,2)$ has inverse $-(2,2)=(1,1)$.

2. $\{n(1,1) \mid n \in \mathbb{Z}\}=\{(1,1),(2,2),(3,0),(4,1),(5,2),(0,0)\}$.
3. There are 8 such elements: $(2,0),(4,0),(0,1),(2,1),(4,1),(0,2),(2,2),(4,2)$.

2 Proofs

(I) Let G be a group with identity elements e_{1}, e_{2}. Prove that $e_{1}=e_{2}$.
(II) Let G, H be groups. Prove that if G, H are both abelian, then $G \times H$ is abelian.
(III) Let G be a group, and let $g, h \in G$. Assume that

$$
\text { for all } x \in G \text {, we have } x g=g x \text {. }
$$

Prove that

$$
\text { for all } x \in G, \text { we have } x\left(h g h^{-1}\right)=\left(h g h^{-1}\right) x
$$

Solutions. (I) Note that by the definition of identity element,

$$
\begin{aligned}
e_{1} & =e_{1} e_{2} & & \left(e_{2} \text { is an identity, so we scale } e_{1} \text { by } e_{2} \text { on the right }\right) \\
& =e_{2} & & \left(e_{1} \text { is also an identity, so we scale } e_{2} \text { by } e_{1} \text { on the left }\right) .
\end{aligned}
$$

(II) Choose any $(a, b),(c, d) \in G \times H$. Note that

$$
\begin{aligned}
(a, b)(c, d) & =(a c, b d) & & \text { (definition of products of groups) } \\
& =(c a, d b) & & \text { (both } G \text { and } H \text { are abelian) } \\
& =(c, d)(a, b) & & \text { (definition of products of groups) } .
\end{aligned}
$$

(III) Let's write e for the identity element of G. Choose any $x \in G$ and note that

$$
\begin{aligned}
x\left(h g h^{-1}\right) & =((x h) g) h^{-1} & & \text { (associativity) } \\
& =(g(x h)) h^{-1} & & \text { (by hypothesis, applied to }(x h)) \\
& =(g x)\left(h h^{-1}\right) & & \text { (associativity) } \\
& =g x & & \text { (definition of inverse) } \\
& =g e x & & \text { (definition of identity) } \\
& =g\left(h h^{-1}\right) x & & \text { (definition of inverse) } \\
& =(g h)\left(h^{-1} x\right) & & \text { (associativity) } \\
& =(h g)\left(h^{-1} x\right) & & \text { (by hypothesis, applied to } h) \\
& =\left(h g h^{-1}\right) x & & \text { (associativity). }
\end{aligned}
$$

