1 Computations

- 1. Write down every element of $\mathbb{Z}_3 \times \mathbb{Z}_3$, and write down its inverse. (For one example, note that the element (0,0) has inverse -(0,0) = (0,0).)
- 2. Write down every multiple of (1,1) in the group $\mathbb{Z}_6 \times \mathbb{Z}_3$.
- 3. Write down three elements (a, b) of $\mathbb{Z}_6 \times \mathbb{Z}_3$ with the property

$$|\{n(a,b) \mid n \in \mathbb{Z}\}| = 3.$$

- Solution. 1. (0,0) has inverse -(0,0) = (0,0),
 - (1,0) has inverse -(1,0) = (2,0),
 - (2,0) has inverse -(2,0) = (1,0),
 - (0,1) has inverse -(0,1) = (0,2),
 - (1,1) has inverse -(1,1) = (2,2),
 - (2,1) has inverse -(2,1) = (1,2),
 - (0,2) has inverse -(0,2) = (0,1),
 - (1,2) has inverse -(1,2) = (2,1), and
 - (2,2) has inverse -(2,2) = (1,1).
 - 2. $\{n(1,1) \mid n \in \mathbb{Z}\} = \{(1,1), (2,2), (3,0), (4,1), (5,2), (0,0)\}.$
 - 3. There are 8 such elements: (2,0), (4,0), (0,1), (2,1), (4,1), (0,2), (2,2), (4,2).

2 Proofs

- (I) Let G be a group with identity elements e_1, e_2 . Prove that $e_1 = e_2$.
- (II) Let G, H be groups. Prove that if G, H are both abelian, then $G \times H$ is abelian.
- (III) Let G be a group, and let $g, h \in G$. Assume that

for all $x \in G$, we have xg = gx.

Prove that

for all
$$x \in G$$
, we have $x(hgh^{-1}) = (hgh^{-1})x$.

Solutions. (I) Note that by the definition of identity element,

$e_1 = e_1 e_2$	$(e_2 \text{ is an identity, so we scale } e_1 \text{ by } e_2 \text{ on the right})$
$= e_2$	$(e_1 \text{ is also an identity, so we scale } e_2 \text{ by } e_1 \text{ on the left}).$

(II) Choose any $(a, b), (c, d) \in G \times H$. Note that

(a,b)(c,d) = (ac,bd)	(definition of products of groups)
=(ca,db)	(both G and H are abelian)
= (c,d)(a,b)	(definition of products of groups).

(III) Let's write e for the identity element of G. Choose any $x \in G$ and note that

$x\left(hgh^{-1} ight)$ = ((xh) g) h^{-1}	(associativity)
$=\left(g\left(xh\right) \right) h^{-1}$	(by hypothesis, applied to (xh))
$= (gx)(hh^{-1})$	(associativity)
= gx	(definition of inverse)
= gex	(definition of identity)
$=g\left(hh^{-1} ight)x$	(definition of inverse)
$= (gh) \left(h^{-1}x \right)$	(associativity)
$= (hg) \left(h^{-1}x \right)$	(by hypothesis, applied to h)
$= \left(hgh^{-1}\right)x$	(associativity).