As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and justify your work.

## 1 Computations

1. Write down every element of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and write down its inverse. (For one example, note that the element $(0,0)$ has inverse $-(0,0)=(0,0)$.)
2. Write down every multiple of $(1,1)$ in the group $\mathbb{Z}_{6} \times \mathbb{Z}_{3}$.
3. Write down three elements $(a, b)$ of $\mathbb{Z}_{6} \times \mathbb{Z}_{3}$ with the property

$$
|\{n(a, b) \mid n \in \mathbb{Z}\}|=3
$$

## 2 Proofs

(I) Let $G$ be a group with identity elements $e_{1}, e_{2}$. Prove that $e_{1}=e_{2}$.
(II) Let $G, H$ be groups. Prove that if $G, H$ are both abelian, then $G \times H$ is abelian.
(III) Let $G$ be a group, and let $g, h \in G$. Assume that

$$
\text { for all } x \in G, \text { we have } x g=g x
$$

Prove that

$$
\text { for all } x \in G \text {, we have } x\left(h g h^{-1}\right)=\left(h g h^{-1}\right) x
$$

