## HW 1

DUE ON 4 OCTOBER, 2023

## 1. Computations

(1) Let $A=\{a, b, c\}$.
(a) Write down all functions from $A$ to itself, until you have convinced yourself that you could write down all such functions. How many are there? (So the answer to this question is a number.) Here is an example of a function from $A$ to itself:

$$
\begin{gathered}
a \mapsto b \\
b \mapsto c \\
c \mapsto a .
\end{gathered}
$$

(b) Write down all functions $f$ from $A$ to itself with the property that $f \circ f$ is the identity function on $A$.
(2) Let $B=\{0,1,2,3\}$. Let $C$ be the following set:
$C=\{(a, b) \in B \times B \mid$ both $a$ and $b$ are odd $\}$.
Write down all elements of $C$.

## 2. Proofs

Here are two example problems, with solutions.
Example 2.1. For any integers $a, b$, define $a \star b=|a b|$. Prove $\star$ is an operation on $\mathbb{Z}$.
Solution. Choose $a, b \in \mathbb{Z}$. Note that if $a$ and $b$ have the same sign, then $a \star b=a b$, which is an integer, and if $a$ and $b$ have different signs, then $a \star b=-a b$, which is also an integer. Thus, we see that * satisfies the definition of operation.

Here are some comments about the example.

- Literally everything in the solution is part of a complete sentence.
- Before I manipulate $a, b$ at you, I tell you specifically what they are. (This is required when writing a proof, or I will think to myself "who are these people $a$ and $b$ ? I don't remember being introduced to them".)
- I don't restate the definition of operation, because that is part of the set of common knowledge for this class (ie, you are writing these proofs for me, and I know all the definitions.)
The "easier" version of this type of question is when you must show a statement is false - you need only provide a counterexample. Often you can even skip introductions, because you will not need variables!

Example 2.2. For any nonzero integers $a, b$, define $a \bullet b=a / b$. Prove that $\bullet$ is not an operation on $\mathbb{Z}$.

Solution. Note that 1,2 are integers but $1 \bullet 2=1 / 2$, which is not an integer. Therefore, we see that - is not an operation on $\mathbb{Z}$.

Here are some exercises. Fill in the blanks with complete sentences.
(I) For any integers $a, b$, define $a \star b=a-b$. Prove $\star$ is an operation on $\mathbb{Z}$.

Solution. Choose $a, b \in \mathbb{Z}$. Note that $a \star b=a-b$, which is also an integer. $\qquad$ .
(II) For any positive integers $a, b$, define $a \bullet b=a-b$. Prove $\bullet$ is not an operation on $\mathbb{Z}_{>0}$. Solution. $\qquad$ . Therefore, we see that $\bullet$ is not an operation on $\mathbb{Z}_{>0}$.
(III) For any $a, b \in \mathbb{Q}_{\neq 0}$, define $a \odot b=a / b$, Then $\odot$ is an operation on $\mathbb{Q}_{\neq 0}$. Solution. Choose any $a, b \in \mathbb{Q}_{\neq 0}$. $\qquad$ . We see that

$$
a \odot b=\frac{c}{d} \odot \frac{e}{f}=\frac{\frac{c}{d}}{\frac{e}{f}}=\frac{c e}{d f} .
$$

Since $c, d, e, f$ are nonzero as we noted above, we see that $c d, d f$ are nonzero, so that $\frac{c e}{d f} \in \mathbb{Q}_{\neq 0}$. Therefore, we conclude that $\odot$ is an operation on $\mathbb{Q}_{\neq 0}$.
(IV) Consider for a moment the operation of multiplication on the integers. Prove that this operation admits an identity.
Solution. $\qquad$ . Thus, we see that 1 is the identity element for multiplication on the integers.

Finally, here is an opportunity to write a complete proof:
(i) In Exercise (2), we defined the set $C$. For any $(a, b),(c, d) \in C$, define $(a, b) \oplus(c, d)=$ $(a+c, b+d)$. Prove that $\oplus$ is not an operation on $C$.

## 3. Solutions

(1) (a) There are 27 functions from $A$ to itself:

| $a \mapsto a$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $b \mapsto a$ | $b \mapsto a$ | $b \mapsto a$ | $b \mapsto b$ | $b \mapsto b$ | $b \mapsto b$ | $b \mapsto c$ | $b \mapsto c$ | $b \mapsto c$ |
| $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ | $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ | $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ |
| $a \mapsto b$ |
| $b \mapsto a$ | $b \mapsto a$ | $b \mapsto a$ | $b \mapsto b$ | $b \mapsto b$ | $b \mapsto b$ | $b \mapsto c$ | $b \mapsto c$ | $b \mapsto c$ |
| $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ | $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ | $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ |
| $a \mapsto c$ |
| $b \mapsto a$ | $b \mapsto a$ | $b \mapsto a$ | $b \mapsto b$ | $b \mapsto b$ | $b \mapsto b$ | $b \mapsto c$ | $b \mapsto c$ | $b \mapsto c$ |
| $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ | $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ | $c \mapsto a$ | $c \mapsto b$ | $c \mapsto c$ |

(b)

| $a \mapsto a$ | $a \mapsto a$ | $a \mapsto c$ | $a \mapsto b$ |
| :--- | :--- | :--- | :--- |
| $b \mapsto b$ | $b \mapsto c$ | $b \mapsto b$ | $b \mapsto a$ |
| $c \mapsto c$ | $c \mapsto b$ | $c \mapsto a$ | $c \mapsto c$ |

(2) $\{(1,1),(1,3),(3,1),(3,3)\}$
(I) "Thus, we see that $\star$ is an operation on $\mathbb{Z}$."
(II) "Note that $1 \bullet 3=1-3=-2$ is not a positive integer."
(III) "Since $a, b \in \mathbb{Q}_{\neq 0}$, there exist $c, d, e, f \in \mathbb{Z}$, all of which are nonzero, such that $a=\frac{c}{d}$ and $b=\frac{e}{f} . "$
(IV) "Recall that for any $n \in \mathbb{Z}$, we know $1 \cdot n=n \cdot 1=n$."
(i) By Exercise (2), we know that $(1,1) \in C$, but $(1,1) \oplus(1,1)=(2,2) \notin C$. Thus, we see that $\oplus$ is not an operation on $C$.

