Computations

1. For the following element f of S_{9}, do the following:
(i) write f in disjoint cycle form,
(ii) write f as a product of transpositions,
(iii) state the parity of f, and
(iv) write $f \circ(146) \circ(329)$ in disjoint cycle form.

$$
\begin{aligned}
& f:\{1,2,3,4,5,6,7,8,9\} \rightarrow\{1,2,3,4,5,6,7,8,9\} \\
& 1 \mapsto 1 \\
& 2 \mapsto 5 \\
& 3 \mapsto 4 \\
& 4 \mapsto 2 \\
& 5 \mapsto 3 \\
& 6 \mapsto 7 \\
& 7 \mapsto 8 \\
& 8 \mapsto 9 \\
& 9 \mapsto 6
\end{aligned}
$$

Solution. (i) (2534)(6789),
(ii) $(24)(23)(25)(69)(68)(67)$,
(iii) even, and
(iv) (126)(35)(4789).
2. Suppose G is a group with a subgroup H. For any $g \in G$, define $g H=\{g h \mid h \in H\}$ and $H g=\{h g \mid h \in H\}$. In the following four parts, you must enumerate some elements of D_{4}. Write your elements in our "standard form"; that is, as either "id" or " $F^{i} R^{j}$ " for some $i \in\{0,1\}$ and $j \in\{0,1,2,3\}$.
(a) Enumerate all elements in $\langle R\rangle F$.
(b) Enumerate all elements in $F\langle R\rangle$.
(c) Enumerate all elements in $\langle F\rangle R$.
(d) Enumerate all elements in $R\langle F\rangle$.

Solution. (a) $\langle R\rangle F=\left\{F, R F, R^{2} F, R^{3} F\right\}=\left\{F, F R^{3}, F R^{2}, F R\right\}$.
(b) $F\langle R\rangle=\left\{F, F R, F R^{2}, F R^{3}\right\}$.
(c) $\langle F\rangle R=\{R, F R\}$.
(d) $R\langle F\rangle F=\{R, R F\}=\left\{R, F R^{3}\right\}$.

Proofs

(I) Suppose that G is a group with a subgroup H. Suppose that $g_{1}, g_{2} \in G$ satisfy $g_{1} g_{2} \in H$. Prove:

$$
\text { if } g_{1} \in H \text {, then } g_{2} \in H
$$

Proof. Since H is a subgroup, it is closed under inverses, so the fact that $g_{1} \in H$ tells us that $g_{1}^{-1} \in H$. The fact that H is also closed under the operation of G-along with the associativity of the operation on G-tells us that

$$
g_{2}=\left(g_{1}^{-1} g_{1}\right) g_{2}=g_{1}^{-1}\left(g_{1} g_{2}\right) \in H
$$

(II) Suppose that G, H are groups with identities e_{G}, e_{H}, respectively. Next, suppose that $f: G \rightarrow H$ is an isomorphism. Prove that $f\left(e_{G}\right)=e_{H}$.

Proof. Note that

$$
\begin{aligned}
e_{G} f\left(e_{G}\right) & =f\left(e_{G}\right) & & \left(\text { since } e_{H} \text { is the identity of } G\right) \\
& =f\left(e_{G} e_{G}\right) & & \left(\text { since } e_{G} \text { is the identity of } G\right) \\
& =f\left(e_{G}\right) f\left(e_{G}\right) & & (\text { since } f \text { is an isomorphism) },
\end{aligned}
$$

so we conclude by right cancellation.
(III) Suppose that G is a group and H is a subgroup of G. Choose any $g \in G$, and let's write

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} .
$$

Recall that in HW3, we proved that $g \mathrm{Hg}^{-1}$ is a subgroup of G. (You do not need to prove this again here.) Prove that H is isomorphic to $g \mathrm{Hg}^{-1}$.

Proof. Let's define

$$
\begin{aligned}
\phi: H & \rightarrow g H g^{-1} \\
h & \mapsto g h g^{-1} .
\end{aligned}
$$

- To see that ϕ is injective, choose any $h_{1}, h_{2} \in H$ and assume that $\phi\left(h_{1}\right)=\phi\left(h_{2}\right)$. Then

$$
g h_{1} g^{-1}=\phi\left(h_{1}\right)=\phi\left(h_{2}\right)=g h_{2} g^{-1},
$$

so we see that $h_{1}=h_{2}$ by right and left cancellation. Thus, we see that ϕ is injective.

- Choose any $h \in H$, so that $g h g^{-1} \in g H g^{-1}$ is arbitrary. Then $\phi(h)=g h g^{-1}$, so we see ϕ is surjective.
- Finally, choose any $h_{1}, h_{2} \in H$ and note that

$$
\phi\left(h_{1}\right) \phi\left(h_{2}\right)=\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g h_{1}\left(g^{-1} g\right) h_{2} g^{-1}=g\left(h_{1} h_{2}\right) g^{-1}=\phi\left(h_{1} h_{2}\right),
$$

so we conclude that ϕ is an isomorphism.

Extra Credit (if you have extra time)

This exercise shows that every group is isomorphic to a subgroup of a symmetric group! Suppose that G is a group. For any $g \in G$, define

$$
\begin{aligned}
f_{g}: G & \rightarrow G \\
x & \mapsto g x .
\end{aligned}
$$

We have shown that $f_{g} \in S_{G}$. (You don't need to do this again.) Now define

$$
\begin{aligned}
\phi: G & \rightarrow S_{G} \\
g & \mapsto f_{g} .
\end{aligned}
$$

and let's write $\phi(G)$ for the set $\{\phi(g) \mid g \in G\}$, which is a subset of S_{G}.
(a) Prove that $\phi(G)$ is a subgroup of S_{G}.
(b) Prove that ϕ is injective.
(c) Prove that for all $g, h \in G$, we have that $\phi(g h)=\phi(g) \phi(h)$.
(d) Conclude that G is isomorphic to $\phi(G)$.

Proof. Let's write e for the identity of G.
(a) Note that for any $x \in G$,

$$
f_{e_{G}}(x)=e_{G} x=x=\operatorname{id}_{G}(x)
$$

so $\operatorname{id}_{G} \in \phi(G)$. Next, choose any $g_{1}, g_{2} \in G$, so that $\phi\left(g_{1}\right), \phi\left(g_{2}\right)$ are arbitrary in $\phi(G)$. Then for any $x \in G$, we see that

$$
\phi\left(g_{1} g_{2}\right)(x)=f_{g_{1} g_{2}}(x)=\left(g_{1} g_{2}\right)(x)=g_{1}\left(g_{2} x\right)=g_{1}\left(f_{g_{2}}(x)\right)=\left(f_{g_{1}} \circ f_{g_{2}}\right)(x)=\left(\phi\left(g_{1}\right) \phi\left(g_{2}\right)\right)(x)
$$

that is, we see $\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right) \in \phi(G)$, so that $\phi(G)$ is closed under the operation of S_{G}. Finally, choose any $g \in G$, so that $\phi(g)$ arbitrary in $\phi(G)$. Note that for any $x \in G$,

$$
\left(\phi\left(g^{-1}\right) \phi(g)\right)(x)=\left(f_{g^{-1}} \circ f_{g}\right)(x)=g^{-1}(g x)=x=\operatorname{id}_{G}(x)
$$

so we see that $(\phi(g))^{-1}=\phi\left(g^{-1}\right) \in \phi(G)$ by a fact from class (that is, in a group, we only need to check "one side" of inverses).
(b) Choose $g_{1}, g_{2} \in G$, and assume $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$. Then

$$
g_{1}=g_{1} e=f_{g_{1}}(e)=\phi\left(g_{1}\right)(e)=\phi\left(g_{2}\right)(e)=f_{g_{2}}(e)=g_{2} e=g_{2}
$$

(c) Choose any $x \in G$ and note that

$$
\phi(g h)(x)=f_{g h}(x)=(g h) x=g(h x)=g\left(f_{h}(x)\right)=f_{g}\left(f_{h}(x)\right)=\left(f_{g} \circ f_{h}\right)(x)=(\phi(g) \phi(h))(x),
$$

so that $\phi(g h)=\phi(g) \phi(h)$.
(d) Let's define

$$
\begin{aligned}
\psi: G & \rightarrow \phi(G) \\
g & \mapsto \phi(g) .
\end{aligned}
$$

By (a), we know that $\phi(G)$ is a group; by (c), we know ψ respects the operation of G; and by (b) and the definition of $\phi(G)$, we know that ψ is bijective.

