Math 344

Computations

1. For the following element f of S_9 , do the following:

- (i) write f in disjoint cycle form,
- (ii) write f as a product of transpositions,
- (iii) state the parity of f, and
- (iv) write $f \circ (146) \circ (329)$ in disjoint cycle form.

$f: \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$	$\rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
1+	$\rightarrow 1$
2+	$\rightarrow 5$
3+	$\rightarrow 4$
4	$\rightarrow 2$
5 -	→ 3
6+	$\rightarrow 7$
7 -	→ 8
8+	→ 9
9+	→ 6

Solution. (i) (2534)(6789),

- (ii) (24)(23)(25)(69)(68)(67),
- (iii) even, and
- (iv) (126)(35)(4789).

- 2. Suppose G is a group with a subgroup H. For any $g \in G$, define $gH = \{gh \mid h \in H\}$ and $Hg = \{hg \mid h \in H\}$. In the following four parts, you must enumerate some elements of D_4 . Write your elements in our "standard form"; that is, as either "id" or " $F^i R^{j}$ " for some $i \in \{0, 1\}$ and $j \in \{0, 1, 2, 3\}$.
 - (a) Enumerate all elements in $\langle R \rangle F$.
 - (b) Enumerate all elements in $F\langle R \rangle$.
 - (c) Enumerate all elements in $\langle F \rangle R$.
 - (d) Enumerate all elements in $R\langle F \rangle$.

Solution. (a) $\langle R \rangle F = \{F, RF, R^2F, R^3F\} = \{F, FR^3, FR^2, FR\}.$ (b) $F \langle R \rangle = \{F, FR, FR^2, FR^3\}.$ (c) $\langle F \rangle R = \{R, FR\}.$ (d) $R \langle F \rangle F = \{R, RF\} = \{R, FR^3\}.$

Proofs

(I) Suppose that G is a group with a subgroup H. Suppose that $g_1, g_2 \in G$ satisfy $g_1g_2 \in H$. Prove:

if $g_1 \in H$, then $g_2 \in H$.

Proof. Since H is a subgroup, it is closed under inverses, so the fact that $g_1 \in H$ tells us that $g_1^{-1} \in H$. The fact that H is also closed under the operation of G—along with the associativity of the operation on G—tells us that

$$g_2 = (g_1^{-1}g_1)g_2 = g_1^{-1}(g_1g_2) \in H.$$

(II) Suppose that G, H are groups with identities e_G, e_H , respectively. Next, suppose that $f: G \to H$ is an isomorphism. Prove that $f(e_G) = e_H$.

Proof. Note that

$$e_G f(e_G) = f(e_G) \qquad (since \ e_H \text{ is the identity of } G)$$
$$= f(e_G e_G) \qquad (since \ e_G \text{ is the identity of } G)$$
$$= f(e_G) f(e_G) \qquad (since \ f \text{ is an isomorphism}),$$

so we conclude by right cancellation.

(III) Suppose that G is a group and H is a subgroup of G. Choose any $g \in G$, and let's write

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

Recall that in HW3, we proved that gHg^{-1} is a subgroup of G. (You do not need to prove this again here.) Prove that H is isomorphic to gHg^{-1} .

Proof. Let's define

$$\phi: H \to gHg^{-1}$$
$$h \mapsto ghg^{-1}.$$

• To see that ϕ is injective, choose any $h_1, h_2 \in H$ and assume that $\phi(h_1) = \phi(h_2)$. Then

$$gh_1g^{-1} = \phi(h_1) = \phi(h_2) = gh_2g^{-1}$$

so we see that $h_1 = h_2$ by right and left cancellation. Thus, we see that ϕ is injective.

- Choose any $h \in H$, so that $ghg^{-1} \in gHg^{-1}$ is arbitrary. Then $\phi(h) = ghg^{-1}$, so we see ϕ is surjective.
- Finally, choose any $h_1, h_2 \in H$ and note that

$$\phi(h_1)\phi(h_2) = (gh_1g^{-1})(gh_2g^{-1}) = gh_1(g^{-1}g)h_2g^{-1} = g(h_1h_2)g^{-1} = \phi(h_1h_2),$$

so we conclude that ϕ is an isomorphism.

Extra Credit (if you have extra time)

This exercise shows that every group is isomorphic to a subgroup of a symmetric group! Suppose that G is a group. For any $g \in G$, define

$$f_g: G \to G$$
$$x \mapsto gx.$$

We have shown that $f_g \in S_G$. (You don't need to do this again.) Now define

$$\begin{aligned} \phi &: G \to S_G \\ g \mapsto f_g. \end{aligned}$$

and let's write $\phi(G)$ for the set $\{\phi(g) \mid g \in G\}$, which is a subset of S_G .

- (a) Prove that $\phi(G)$ is a subgroup of S_G .
- (b) Prove that ϕ is injective.
- (c) Prove that for all $g, h \in G$, we have that $\phi(gh) = \phi(g)\phi(h)$.
- (d) Conclude that G is isomorphic to $\phi(G)$.

Proof. Let's write e for the identity of G.

(a) Note that for any $x \in G$,

$$f_{e_G}(x) = e_G x = x = \mathrm{id}_G(x),$$

so $\operatorname{id}_G \in \phi(G)$. Next, choose any $g_1, g_2 \in G$, so that $\phi(g_1), \phi(g_2)$ are arbitrary in $\phi(G)$. Then for any $x \in G$, we see that

$$\phi(g_1g_2)(x) = f_{g_1g_2}(x) = (g_1g_2)(x) = g_1(g_2x) = g_1(f_{g_2}(x)) = (f_{g_1} \circ f_{g_2})(x) = (\phi(g_1)\phi(g_2))(x);$$

that is, we see $\phi(g_1) \phi(g_2) = \phi(g_1g_2) \in \phi(G)$, so that $\phi(G)$ is closed under the operation of S_G . Finally, choose any $g \in G$, so that $\phi(g)$ arbitrary in $\phi(G)$. Note that for any $x \in G$,

$$\left(\phi\left(g^{-1}\right)\phi(g)\right)(x) = \left(f_{g^{-1}} \circ f_g\right)(x) = g^{-1}\left(gx\right) = x = \mathrm{id}_G(x),$$

so we see that $(\phi(g))^{-1} = \phi(g^{-1}) \in \phi(G)$ by a fact from class (that is, in a group, we only need to check "one side" of inverses).

(b) Choose $g_1, g_2 \in G$, and assume $\phi(g_1) = \phi(g_2)$. Then

$$g_1 = g_1 e = f_{g_1}(e) = \phi(g_1)(e) = \phi(g_2)(e) = f_{g_2}(e) = g_2 e = g_2.$$

(c) Choose any $x \in G$ and note that

$$\phi(gh)(x) = f_{gh}(x) = (gh)x = g(hx) = g(f_h(x)) = f_g(f_h(x)) = (f_g \circ f_h)(x) = (\phi(g)\phi(h))(x)$$

so that $\phi(gh) = \phi(g)\phi(h)$.

(d) Let's define

$$\psi: G \to \phi(G)$$
$$g \mapsto \phi(g).$$

By (a), we know that $\phi(G)$ is a group; by (c), we know ψ respects the operation of G; and by (b) and the definition of $\phi(G)$, we know that ψ is bijective.