Name:_____

- Put your name in the "_____" above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

- 1. For the following element f of S_9 , do the following:
 - (i) write f in disjoint cycle form,
 - (ii) write f as a product of transpositions,
 - (iii) state the parity of f, and
 - (iv) write $f \circ (146) \circ (329)$ in disjoint cycle form.

$$\begin{array}{c} f\colon \{1,2,3,4,5,6,7,8,9\} \to \{1,2,3,4,5,6,7,8,9\} \\ 1 \mapsto 1 \\ 2 \mapsto 5 \\ 3 \mapsto 4 \\ 4 \mapsto 2 \\ 5 \mapsto 3 \\ 6 \mapsto 7 \\ 7 \mapsto 8 \\ 8 \mapsto 9 \\ 9 \mapsto 6 \end{array}$$

- 2. Suppose G is a group with a subgroup H. For any $g \in G$, define $gH = \{gh \mid h \in H\}$ and $Hg = \{hg \mid h \in H\}$. In the following four parts, you must enumerate some elements of D_4 . Write your elements in our "standard form"; that is, as either "id" or " $F^i R^{j}$ " for some $i \in \{0, 1\}$ and $j \in \{0, 1, 2, 3\}$.
 - (a) Enumerate all elements in $\langle R \rangle F$.

(b) Enumerate all elements in $F\langle R \rangle$.

(c) Enumerate all elements in $\langle F \rangle R$.

(d) Enumerate all elements in $R\langle F \rangle$.

Proofs

(I) Suppose that G is a group with a subgroup H. Suppose that $g_1, g_2 \in G$ satisfy $g_1g_2 \in H$. Prove:

if $g_1 \in H$, then $g_2 \in H$.

(II) Suppose that G, H are groups with identities e_G, e_H , respectively. Next, suppose that $f: G \to H$ is an isomorphism. Prove that $f(e_G) = e_H$.

(III) Suppose that G is a group and H is a subgroup of G. Choose any $g \in G$, and let's write

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

Recall that in HW3, we proved that gHg^{-1} is a subgroup of G. (You do not need to prove this again here.) Prove that H is isomorphic to gHg^{-1} .

Extra Credit (if you have extra time)

This exercise shows that every group is isomorphic to a subgroup of a symmetric group! Suppose that G is a group. For any $g \in G$, define

$$f_g: G \to G$$
$$x \mapsto gx.$$

We have shown that $f_g \in S_G$. (You don't need to do this again.) Now define

$$\phi: G \to S_G$$
$$g \mapsto f_g.$$

and let's write $\phi(G)$ for the set $\{\phi(g) \mid g \in G\}$, which is a subset of S_G .

- (a) Prove that $\phi(G)$ is a subgroup of S_G .
- (b) Prove that ϕ is injective.
- (c) Prove that for all $g, h \in G$, we have that $\phi(gh) = \phi(g)\phi(h)$.
- (d) Conclude that G is isomorphic to $\phi(G)$.