Name: \qquad

- Put your name in the " \qquad " above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

1. For the following element f of S_{9}, do the following:
(i) write f in disjoint cycle form,
(ii) write f as a product of transpositions,
(iii) state the parity of f, and
(iv) write $f \circ(146) \circ(329)$ in disjoint cycle form.

$$
\begin{aligned}
& f:\{1,2,3,4,5,6,7,8,9\} \rightarrow\{1,2,3,4,5,6,7,8,9\} \\
& 1 \mapsto 1 \\
& 2 \mapsto 5 \\
& 3 \mapsto 4 \\
& 4 \mapsto 2 \\
& 5 \mapsto 3 \\
& 6 \mapsto 7 \\
& 7 \mapsto 8 \\
& 8 \mapsto 9 \\
& 9 \mapsto 6
\end{aligned}
$$

2. Suppose G is a group with a subgroup H. For any $g \in G$, define $g H=\{g h \mid h \in H\}$ and $H g=\{h g \mid h \in H\}$. In the following four parts, you must enumerate some elements of D_{4}. Write your elements in our "standard form"; that is, as either "id" or " $F^{i} R^{j}$ " for some $i \in\{0,1\}$ and $j \in\{0,1,2,3\}$.
(a) Enumerate all elements in $\langle R\rangle F$.
(b) Enumerate all elements in $F\langle R\rangle$.
(c) Enumerate all elements in $\langle F\rangle R$.
(d) Enumerate all elements in $R\langle F\rangle$.

Proofs

(I) Suppose that G is a group with a subgroup H. Suppose that $g_{1}, g_{2} \in G$ satisfy $g_{1} g_{2} \in H$. Prove:
if $g_{1} \in H$, then $g_{2} \in H$.
(II) Suppose that G, H are groups with identities e_{G}, e_{H}, respectively. Next, suppose that $f: G \rightarrow H$ is an isomorphism. Prove that $f\left(e_{G}\right)=e_{H}$.
(III) Suppose that G is a group and H is a subgroup of G. Choose any $g \in G$, and let's write

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} .
$$

Recall that in HW3, we proved that $g H^{-1}$ is a subgroup of G. (You do not need to prove this again here.) Prove that H is isomorphic to $g \mathrm{Hg}^{-1}$.

Extra Credit (if you have extra time)

This exercise shows that every group is isomorphic to a subgroup of a symmetric group! Suppose that G is a group. For any $g \in G$, define

$$
\begin{aligned}
f_{g}: G & \rightarrow G \\
x & \mapsto g x .
\end{aligned}
$$

We have shown that $f_{g} \in S_{G}$. (You don't need to do this again.) Now define

$$
\begin{aligned}
\phi: G & \rightarrow S_{G} \\
g & \mapsto f_{g} .
\end{aligned}
$$

and let's write $\phi(G)$ for the set $\{\phi(g) \mid g \in G\}$, which is a subset of S_{G}.
(a) Prove that $\phi(G)$ is a subgroup of S_{G}.
(b) Prove that ϕ is injective.
(c) Prove that for all $g, h \in G$, we have that $\phi(g h)=\phi(g) \phi(h)$.
(d) Conclude that G is isomorphic to $\phi(G)$.

