Name: \qquad

- Put your name in the " \qquad " above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

1. For the following element f of S_{9}, do the following:
(i) write f in disjoint cycle form,
(ii) write f as a product of transpositions,
(iii) state the parity of f, and
(iv) write (126) $\circ(389) \circ f$ in disjoint cycle form.

$$
\begin{aligned}
& f:\{1,2,3,4,5,6,7,8,9\} \rightarrow\{1,2,3,4,5,6,7,8,9\} \\
& 1 \mapsto 7 \\
& 2 \mapsto 2 \\
& 3 \mapsto 4 \\
& 4 \mapsto 5 \\
& 5 \mapsto 3 \\
& 6 \mapsto 1 \\
& 7 \mapsto 8 \\
& 8 \mapsto 9 \\
& 9 \mapsto 6
\end{aligned}
$$

Solution. (i) (17896)(345),
(ii) $(17)(78)(89)(96)(34)(45)$,
(iii) even,
(iv) (179)(26)(3458).
2. Suppose that G is a group with a subgroup H. For any $g \in G$, define $g H=\{g h \mid h \in H\}$. In disjoint cycle form, enumerate all elements of $g H$ in the following situations:
(a) $G=S_{3}, H=\langle(123)\rangle, g=(132)$,
(b) $G=S_{3}, H=\langle(123)\rangle, g=(12)$, and
(c) $G=S_{3}, H=\langle(123)\rangle, g=(23)$.

Solution. 1. $\left\{\operatorname{id}_{\{1,2,3\}},(123),(132)\right\}$,
2. $\{(12),(13),(23)\}$, and
3. $\{(12),(13),(23)\}$.

Proofs

(I) Suppose that G is a group and let $D=\{(g, g) \mid g \in G\}$.
(a) Prove that D is a subgroup of $G \times G$.
(b) Prove that G is isomorphic to D.

Proof. Let e be the identity of G
(a) Since $(e, e) \in D$, we know $D \neq \varnothing$. Chose any $g, h \in G$, so that $(g, g),(h, h)$ are arbitrary in D. Then $(g, g)(h, h)=(g h, g h) \in D$, so D is closed under the operation of $G \times G$. Finally, choose any $g \in G$, so that (g, g) is arbitrary in D. Since $(g, g)\left(g^{-1}, g^{-1}\right)=\left(g g^{-1}, g g^{-1}\right)=(e, e)$, and (e, e) is the identity of $G \times G$ from previous work, we know by a class lemma that $(g, g)^{-1}=\left(g^{-1}, g^{-1}\right) \in D$, so D is closed under inverses. We conclude that D is a subgroup of $G \times G$ by our subgroup test.
(b) Define

$$
\begin{aligned}
\phi: G & \rightarrow D \\
g & \mapsto(g, g) .
\end{aligned}
$$

To show ϕ is surjective, choose any $(g, g) \in D$ and note that $\phi(g)=(g, g)$. To show that ϕ is injective, choose any $g, h \in G$ and suppose that $\phi(g)=\phi(h)$. This tells us that $(g, g)=(h, h)$, so that $g=h$. Finally, to show that ϕ respects the operations of G and D, choose any $g, h \in G$ and use the definition of ϕ and the operation on $G \times G$ to note that

$$
\phi(g h)=(g h, g h)=(g, g)(h, h)=\phi(g) \phi(h),
$$

so we conclude that ϕ is an isomorphism.
(II) Suppose that G, H are groups and that $\phi: G \rightarrow H$ is an isomorphism. Prove: if G is commutative, then H is commutative.

Proof. Choose any $h_{1}, h_{2} \in H$. Since ϕ is an isomorphism, it is surjective, so there are $g_{1}, g_{2} \in G$ such that $\phi\left(g_{1}\right)=h_{1}$ and $\phi\left(g_{2}\right)=h_{2}$. Using the assumption that G is commutative and the fact that ϕ respects the operations of G, H, we see

$$
h_{1} h_{2}=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right)=\phi\left(g_{2} g_{1}\right)=\phi\left(g_{2}\right) \phi\left(g_{1}\right)=h_{2} h_{1} .
$$

That is, we see that H is commutative.
(III) Suppose that G is a group with identity e, and choose some $g \in G$. Define the function

$$
\begin{aligned}
f_{g}: G & \rightarrow G \\
x & \mapsto g x .
\end{aligned}
$$

(a) Prove: f_{g} is bijective.
(b) Prove: if f_{g} is an isomorphism, then $g=e$.

Proof. (a) To show that f_{g} is surjective, choose any $y \in G$ and note that $f_{g}\left(g^{-1} y\right)=g\left(g^{-1}\right) y=y$. To show that f_{g} is injective, suppose that $x_{1}, x_{2} \in G$ and $f_{g}\left(x_{1}\right)=f_{g}\left(x_{2}\right)$, so that $g x_{1}=g x_{2}$. But then we see that $x_{1}=x_{2}$ by left cancellation.
(b) If f_{g} is an isomorphism, we know from class that $f_{g}(e)=e$. Then $g=g e=f_{g}(e)=e$, as desired. If we don't remember that fact, we could use the definitions of isomorphism and f to note that

$$
e f_{g}(e)=f_{g}(e)=f_{g}\left(e^{2}\right)=f_{g}(e) f_{g}(e)=(g e) f_{g}(e)=g f_{g}(e),
$$

then conclude that $e=g$ by right cancellation.

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J. Prove that
$I \cup J$ is a subgroup of $G \quad$ if and only if \quad either $I \subseteq J$ or $J \subseteq I$.
Proof. - If $I \subseteq J$, then $I \cup J=J$ is a subgroup of G by hypothesis. Likewise, if $J \subseteq I$, then $I \cup J=I$ is a subgroup of G by hypothesis.

- Conversely, suppose that $I \cup J$ is a subgroup of G. If $I \subseteq J$, we are done! So we suppose that $I \nsubseteq J$; that is, there is some $i \in I$ with $i \notin J$. We must show that $J \subseteq I$, so take an arbitrary $j \in J$. Since $I \cup J$ is a subgroup, we know that $i j \in I \cup J$. There are two cases:
- Suppose $i j \in J$. Since J is a subgroup, we know $j^{-1} \in J$. Closure of J now implies $i=(i j) j^{-1} \in J-$ but this is not the case by our choice of i, so we see $i j \notin J$.
- Suppose $i j \in I$. Since I is a subgroup, we know $i^{-1} \in I$. Closure of I now implies $j=i^{-1}(i j) \in I$, as desired.

