Math 344

Midterm

" above.

Name:

- Put your name in the "_____
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

- 1. For the following element f of S_9 , do the following:
 - (i) write f in disjoint cycle form,
 - (ii) write f as a product of transpositions,
 - (iii) state the parity of f, and
 - (iv) write $(126) \circ (389) \circ f$ in disjoint cycle form.

 $f: \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $1 \mapsto 7$ $2 \mapsto 2$ $3 \mapsto 4$ $4 \mapsto 5$ $5 \mapsto 3$ $6 \mapsto 1$ $7 \mapsto 8$ $8 \mapsto 9$ $9 \mapsto 6$

Solution. (i) (17896)(345), (ii) (17)(78)(89)(96)(34)(45), (iii) even, (iv) (179)(26)(3458).

- 2. Suppose that G is a group with a subgroup H. For any $g \in G$, define $gH = \{gh \mid h \in H\}$. In disjoint cycle form, enumerate all elements of gH in the following situations:
 - (a) G = S₃, H = ⟨(123)⟩, g = (132),
 (b) G = S₃, H = ⟨(123)⟩, g = (12), and
 - (c) $G = S_3, H = \langle (123) \rangle, g = (23).$
- Solution. 1. $\{id_{\{1,2,3\}}, (123), (132)\},\$
- 2. $\{(12), (13), (23)\}$, and

3. $\{(12), (13), (23)\}.$

Proofs

- (I) Suppose that G is a group and let $D = \{(g,g) \mid g \in G\}$.
 - (a) Prove that D is a subgroup of $G \times G$.
 - (b) Prove that G is isomorphic to D.

Proof. Let e be the identity of G

- (a) Since (e,e) ∈ D, we know D ≠ Ø. Chose any g, h ∈ G, so that (g,g), (h, h) are arbitrary in D. Then (g,g)(h,h) = (gh,gh) ∈ D, so D is closed under the operation of G×G. Finally, choose any g ∈ G, so that (g,g) is arbitrary in D. Since (g,g) (g⁻¹,g⁻¹) = (gg⁻¹,gg⁻¹) = (e,e), and (e,e) is the identity of G×G from previous work, we know by a class lemma that (g,g)⁻¹ = (g⁻¹,g⁻¹) ∈ D, so D is closed under inverses. We conclude that D is a subgroup of G×G by our subgroup test.
- (b) Define

$$\phi: G \to D$$
$$g \mapsto (g, g).$$

To show ϕ is surjective, choose any $(g,g) \in D$ and note that $\phi(g) = (g,g)$. To show that ϕ is injective, choose any $g, h \in G$ and suppose that $\phi(g) = \phi(h)$. This tells us that (g,g) = (h,h), so that g = h. Finally, to show that ϕ respects the operations of G and D, choose any $g, h \in G$ and use the definition of ϕ and the operation on $G \times G$ to note that

$$\phi(gh) = (gh, gh) = (g, g)(h, h) = \phi(g)\phi(h),$$

so we conclude that ϕ is an isomorphism.

(II) Suppose that G, H are groups and that $\phi: G \to H$ is an isomorphism. Prove: if G is commutative, then H is commutative.

Proof. Choose any $h_1, h_2 \in H$. Since ϕ is an isomorphism, it is surjective, so there are $g_1, g_2 \in G$ such that $\phi(g_1) = h_1$ and $\phi(g_2) = h_2$. Using the assumption that G is commutative and the fact that ϕ respects the operations of G, H, we see

$$h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) = \phi(g_2g_1) = \phi(g_2)\phi(g_1) = h_2h_1.$$

That is, we see that H is commutative.

(III) Suppose that G is a group with identity e, and choose some $g \in G$. Define the function

$$f_g: G \to G$$
$$x \mapsto gx.$$

- (a) Prove: f_g is bijective.
- (b) Prove: if f_g is an isomorphism, then g = e.
- *Proof.* (a) To show that f_g is surjective, choose any $y \in G$ and note that $f_g(g^{-1}y) = g(g^{-1})y = y$. To show that f_g is injective, suppose that $x_1, x_2 \in G$ and $f_g(x_1) = f_g(x_2)$, so that $gx_1 = gx_2$. But then we see that $x_1 = x_2$ by left cancellation.
- (b) If f_g is an isomorphism, we know from class that $f_g(e) = e$. Then $g = ge = f_g(e) = e$, as desired. If we don't remember that fact, we could use the definitions of isomorphism and f to note that

$$ef_g(e) = f_g(e) = f_g(e^2) = f_g(e)f_g(e) = (ge)f_g(e) = gf_g(e),$$

then conclude that e = g by right cancellation.

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J. Prove that

 $I \cup J$ is a subgroup of G if and only if either $I \subseteq J$ or $J \subseteq I$.

- *Proof.* If $I \subseteq J$, then $I \cup J = J$ is a subgroup of G by hypothesis. Likewise, if $J \subseteq I$, then $I \cup J = I$ is a subgroup of G by hypothesis.
 - Conversely, suppose that $I \cup J$ is a subgroup of G. If $I \subseteq J$, we are done! So we suppose that $I \notin J$; that is, there is some $i \in I$ with $i \notin J$. We must show that $J \subseteq I$, so take an arbitrary $j \in J$. Since $I \cup J$ is a subgroup, we know that $ij \in I \cup J$. There are two cases:
 - Suppose $ij \in J$. Since J is a subgroup, we know $j^{-1} \in J$. Closure of J now implies $i = (ij)j^{-1} \in J$ but this is not the case by our choice of i, so we see $ij \notin J$.
 - Suppose $ij \in I$. Since I is a subgroup, we know $i^{-1} \in I$. Closure of I now implies $j = i^{-1}(ij) \in I$, as desired.