Name: \qquad

- Put your name in the " \qquad " above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

1. For the following element f of S_{9}, do the following:
(i) write f in disjoint cycle form,
(ii) write f as a product of transpositions,
(iii) state the parity of f, and
(iv) write (126) $\circ(389) \circ f$ in disjoint cycle form.

$$
\begin{aligned}
& f:\{1,2,3,4,5,6,7,8,9\} \rightarrow\{1,2,3,4,5,6,7,8,9\} \\
& 1 \mapsto 7 \\
& 2 \mapsto 2 \\
& 3 \mapsto 4 \\
& 4 \mapsto 5 \\
& 5 \mapsto 3 \\
& 6 \mapsto 1 \\
& 7 \mapsto 8 \\
& 8 \mapsto 9 \\
& 9 \mapsto 6
\end{aligned}
$$

2. Suppose that G is a group with a subgroup H. For any $g \in G$, define $g H=\{g h \mid h \in H\}$. In disjoint cycle form, enumerate all elements of $g H$ in the following situations:
(a) $G=S_{3}, H=\langle(123)\rangle, g=(132)$,
(b) $G=S_{3}, H=\langle(123)\rangle, g=(12)$, and
(c) $G=S_{3}, H=\langle(123)\rangle, g=(23)$.

Proofs

(I) Suppose that G is a group and let $D=\{(g, g) \mid g \in G\}$.
(a) Prove that D is a subgroup of $G \times G$.
(b) Prove that G is isomorphic to D.
(II) Suppose that G, H are groups and that $\phi: G \rightarrow H$ is an isomorphism. Prove: if G is commutative, then H is commutative.
(III) Suppose that G is a group with identity e, and choose some $g \in G$. Define the function

$$
\begin{aligned}
f_{g}: G & \rightarrow G \\
x & \mapsto g x .
\end{aligned}
$$

(a) Prove: f_{g} is bijective.
(b) Prove: if f_{g} is an isomorphism, then $g=e$.

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J. Prove that
$I \cup J$ is a subgroup of $G \quad$ if and only if \quad either $I \subseteq J$ or $J \subseteq I$.

