- Put your name in the "_____" above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!

Computations

- 1. For the following element f of S_9 , do the following:
 - (i) write f in disjoint cycle form,
 - (ii) write f as a product of transpositions,
 - (iii) state the parity of f, and
 - (iv) write $(126) \circ (389) \circ f$ in disjoint cycle form.

$$f \colon \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \to \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$1 \mapsto 7$$

$$2 \mapsto 2$$

$$3 \mapsto 4$$

$$4 \mapsto 5$$

$$5 \mapsto 3$$

$$6 \mapsto 1$$

$$7 \mapsto 8$$

$$8 \mapsto 9$$

$$9 \mapsto 6$$

2. Suppose that G is a group with a subgroup H. For any $g \in G$, define $gH = \{gh \mid h \in H\}$. In disjoint cycle form, enumerate all elements of gH in the following situations:

(a)
$$G = S_3$$
, $H = \langle (123) \rangle$, $g = (132)$,

(b)
$$G = S_3$$
, $H = \langle (123) \rangle$, $g = (12)$, and

(c)
$$G = S_3$$
, $H = \langle (123) \rangle$, $g = (23)$.

Proofs

- (I) Suppose that G is a group and let $D = \{(g,g) \mid g \in G\}.$
 - (a) Prove that D is a subgroup of $G \times G$.

(b) Prove that G is isomorphic to D.

(II) Suppose that G, H are groups and that $\phi: G \to H$ is an isomorphism. Prove: if G is commutative, then H is commutative.

(III) Suppose that G is a group with identity e, and choose some $g \in G$. Define the function

$$f_g: G \to G$$

 $x \mapsto gx$.

(a) Prove: f_g is bijective.

(b) Prove: if f_g is an isomorphism, then g = e.

Extra Credit (if you have extra time)

Suppose that G is a group with two subgroups I and J. Prove that

 $I \cup J$ is a subgroup of G if and only if either $I \subseteq J$ or $J \subseteq I$.