Math 344

Final

" above.

Due by 3:00am on Friday, June 12, 2020

Name:

- Put your name in the "_____
- The only resources you should be using are
 - your book [Pin10],
 - your notes,
 - videos of lecture, and
 - talking to me (Derek) in class on Monday.
- Answer all problems.
- Good luck!

Proof questions

1. Suppose that G is a group of size 77. Suppose that H is a nontrivial normal subgroup of G. (In other words, suppose that |H| > 1.) Prove that G/H is cyclic.

Proof. We will first show: for all groups J, if |J| = p is prime, then J is cyclic. To see that this is true, we first use the fact that p > 1 to choose some nonidentity element j of J. By Lagrange's Theorem, we know that ord (j) divides p. But since j is not the identity element of J, we know that ord $(j) \neq 1$. Since p is prime, the only other choice is ord (j) = p, which means that J is cyclic with generator j.

Proceeding to the problem, we know by Lagrange's Theorem that |H| is a divisor of 77, so $|H| \in \{1,7,11,77\}$. Since H is nontrivial, we see $|H| \in \{7,11,77\}$. Since all cosets of H are the same size, we see that $|G/H| \in \{11,7,1\}$. If $|G/H| \in \{11,7\}$, we know by the first paragraph that G/H is cyclic. On the other hand, if |G/H| = 1, then G/H is generated by its identity element—namely, the coset H.

- 2. Let $\phi: \mathbb{Z}_{100} \to \mathbb{Z}$ by any homomorphism of groups.
 - (a) Prove that $\phi(1) = 0$.
 - (b) What is ker ϕ ? Prove your answer is correct.

Proof. (a) Since ϕ is a homomorphism,

$$0 = \phi(\underbrace{1 + \dots + 1}_{0 \text{ times}}) = \underbrace{\phi(1) + \dots + \phi(1)}_{100 \text{ times}} = 100 \cdot \phi(1).$$

But the only integer n with the property that 100n = 0 is n = 0.

(b) Let $m \in \mathbb{Z}_{100}$ be nonzero. Then

$$\phi(m) = \phi(\overbrace{1+\dots+1}^{m \text{ times}}) = \overbrace{\phi(1)+\dots+\phi(1)}^{m \text{ times}} = 100 \cdot 0 = 0.$$

Of course, we also know that $\phi(0) = 0$, so we conclude that ker $(\phi) = \mathbb{Z}_{100}$.

3. Suppose that G is a group and |G| < 200. Suppose that G has subgroups of size 15 and 36. What is the size of G? Prove your answer is correct.

Proof. By Lagrange's Theorem, we know that 15 and 36 both divide |G|. But the only integer between 1 and 200 divisible by both 15 and 36 is 180.

Computational questions

1. Using cycle notation, write down all elements of S_4 with order 2.

Solution. (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23).

2. Using cycle notation, write down all elements of S_4 with order 4.

Solution. (1234), (1243), (1324), (1342), (1423), (1432).

- 3. (a) Using cycle notation, write down one element of S_4 with order 3, and let's call it f. (And let's agree to write "id" for the identity element of S_4 .)
 - (b) Using cycle notation, write down all elements of $\langle f \rangle$.
 - (c) What is $|S_4/\langle f \rangle|$?
 - (d) Write down all elements of $S_4/\langle f \rangle$.

Solution. (a) f = (123).

- (b) id, (123), (132).
- (c) 24/3 = 8.
- (d) $\langle f \rangle = \{ id, (123), (132) \},\$
 - $\langle f \rangle (12) = \{ (12), (13), (23) \},\$
 - $\langle f \rangle (14) = \{ (14), (1423), (1432) \},\$
 - $\langle f \rangle (24) = \{ (24), (1243), (1324) \},$
 - $\langle f \rangle (34) = \{ (34), (1234), (1342) \},\$
 - $\langle f \rangle (12)(34) = \{ (12)(34), (134), (234) \},$
 - $\langle f \rangle (13)(24) = \{ (13)(24), (243), (124) \},\$
 - $\langle f \rangle (14)(23) = \{ (14)(23), (142), (143) \}.$

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284