Name: \qquad

- Put your name in the " \qquad " above.
- The only resources you should be using are
- your book [Pin10],
- your notes,
- videos of lecture, and
- talking to me (Derek) in class on Monday.
- Answer all problems.
- Good luck!

Proof questions

1. Suppose that G is a group of size 77. Suppose that H is a nontrivial normal subgroup of G. (In other words, suppose that $|H|>1$.) Prove that G / H is cyclic.

Proof. We will first show: for all groups J, if $|J|=p$ is prime, then J is cyclic. To see that this is true, we first use the fact that $p>1$ to choose some nonidentity element j of J. By Lagrange's Theorem, we know that $\operatorname{ord}(j)$ divides p. But since j is not the identity element of J, we know that $\operatorname{ord}(j) \neq 1$. Since p is prime, the only other choice is $\operatorname{ord}(j)=p$, which means that J is cyclic with generator j.
Proceeding to the problem, we know by Lagrange's Theorem that $|H|$ is a divisor of 77 , so $|H| \epsilon$ $\{1,7,11,77\}$. Since H is nontrivial, we see $|H| \in\{7,11,77\}$. Since all cosets of H are the same size, we see that $|G / H| \in\{11,7,1\}$. If $|G / H| \in\{11,7\}$, we know by the first paragraph that G / H is cyclic. On the other hand, if $|G / H|=1$, then G / H is generated by its identity element-namely, the coset H.
2. Let $\phi: \mathbb{Z}_{100} \rightarrow \mathbb{Z}$ by any homomorphism of groups.
(a) Prove that $\phi(1)=0$.
(b) What is ker ϕ ? Prove your answer is correct.

Proof. (a) Since ϕ is a homomorphism,

$$
0=\phi(\overbrace{1+\cdots+1}^{100 \text { times }})=\overbrace{\phi(1)+\cdots+\phi(1)}^{100 \text { times }}=100 \cdot \phi(1) .
$$

But the only integer n with the property that $100 n=0$ is $n=0$.
(b) Let $m \in \mathbb{Z}_{100}$ be nonzero. Then

$$
\phi(m)=\phi(\overbrace{1+\cdots+1}^{m \text { times }})=\overbrace{\phi(1)+\cdots+\phi(1)}^{m \text { times }}=100 \cdot 0=0 .
$$

Of course, we also know that $\phi(0)=0$, so we conclude that $\operatorname{ker}(\phi)=\mathbb{Z}_{100}$.
3. Suppose that G is a group and $|G|<200$. Suppose that G has subgroups of size 15 and 36 . What is the size of G ? Prove your answer is correct.

Proof. By Lagrange's Theorem, we know that 15 and 36 both divide $|G|$. But the only integer between 1 and 200 divisible by both 15 and 36 is 180 .

Computational questions

1. Using cycle notation, write down all elements of S_{4} with order 2.

Solution. $(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),(14)(23)$.
2. Using cycle notation, write down all elements of S_{4} with order 4.

Solution. (1234), (1243), (1324), (1342), (1423), (1432).
3. (a) Using cycle notation, write down one element of S_{4} with order 3, and let's call it f. (And let's agree to write "id" for the identity element of S_{4}.)
(b) Using cycle notation, write down all elements of $\langle f\rangle$.
(c) What is $\left|S_{4} /\langle f\rangle\right|$?
(d) Write down all elements of $S_{4} /\langle f\rangle$.

Solution. (a) $f=(123)$.
(b) id, (123), (132).
(c) $24 / 3=8$.
(d) $\bullet\langle f\rangle=\{\mathrm{id},(123),(132)\}$,

- $\langle f\rangle(12)=\{(12),(13),(23)\}$,
- $\langle f\rangle(14)=\{(14),(1423),(1432)\}$,
- $\langle f\rangle(24)=\{(24),(1243),(1324)\}$,
- $\langle f\rangle(34)=\{(34),(1234),(1342)\}$,
- $\langle f\rangle(12)(34)=\{(12)(34),(134),(234)\}$,
- $\langle f\rangle(13)(24)=\{(13)(24),(243),(124)\}$,
- $\langle f\rangle(14)(23)=\{(14)(23),(142),(143)\}$.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284

