${\rm Math}~344$

Spring 2020

Final

Due by 3:00am on Friday, June 12, 2020

Name:_____

- Put your name in the "_____" above.
- The only resources you should be using are
 - your book [Pin10],
 - your notes,
 - $-\,$ videos of lecture, and
 - talking to me (Derek) in class on Monday.
- You can submit either
 - typed or written pdf documents or
 - text typed into d2l.
- Answer all problems.
- Good luck!

Proof questions

1. Suppose that G is a group of size 77. Suppose that H is a nontrivial normal subgroup of G. (In other words, suppose that |H| > 1.) Prove that G/H is cyclic.

- 2. Let $\phi \colon \mathbb{Z}_{100} \to \mathbb{Z}$ by any homomorphism of groups.
 - (a) Prove that $\phi(1) = 0$.

(b) What is $\ker \phi?$ Prove your answer is correct.

3. Suppose that G is a group and |G| < 200. Suppose that G has subgroups of size 15 and 36. What is the size of G? Prove your answer is correct.

Computational questions

1. Using cycle notation, write down all elements of S_4 with order 2.

2. Using cycle notation, write down all elements of S_4 with order 4.

3. (a) Using cycle notation, write down one element of S_4 with order 3, and let's call it f. (And let's agree to write "id" for the identity element of S_4 .)

(b) Using cycle notation, write down all elements of $\langle f \rangle.$

(c) What is $|S_4/\langle f \rangle|$?

(d) Write down all elements of $S_4/\langle f \rangle$.

References

[Pin10] Charles C. Pinter, A book of abstract algebra, Dover Publications, Inc., Mineola, NY, 2010, Reprint of the second (1990) edition [of MR0644983]. MR 2850284