HW 4

Due: 4 November 2025, before I get to my office

As always, your answer will be graded on the quality of presentation as well as the correct answer. To get a good score: write your answer neatly, use complete sentences, and *justify your work*.

1 Computations

1. Consider the function $g \in S_4$ given by

$$1 \mapsto 2$$

$$2 \mapsto 1$$

$$3 \mapsto 3$$

$$4 \mapsto 4$$
.

Write down all functions $f \in S_4$ with the property that

- (a) $f \circ f \circ f = id_{\{1,2,3,4\}}$,
- (b) $f \circ g = g \circ f$,
- (c) $f \circ g = id_{\{1,2,3,4\}}$.
- (d) $f(1) \in \{1, 2\}$ and $f(2) \in \{1, 2\}$.
- 2. How many elements (f,g) in $S_3 \times S_3$ are there that satisfy $(f,g)(f,g)(f,g) = (\mathrm{id}_{\{1,2,3\}},\mathrm{id}_{\{1,2,3\}})$?

2 Proofs

(I) Define the set

$$G = \{ f \in S_5 \mid f(2) = 3 \}.$$

Is G a subgroup of S_5 ? Prove your answer is correct.

(II) Suppose that n is a positive, and suppose that α is a nontrivial cycle in S_n . That is, there is a $j \in \{1, 2, ..., n\}$ and distinct integers $a_1, ..., a_j$ such that

$$\alpha = (a_1 \ a_2 \cdots a_i).$$

Prove: if π in S_n , then $\pi \alpha \pi^{-1}$ is the cycle

$$(\pi(a_1) \pi(a_2) \cdots \pi(a_j)).$$