1 Computations

- 1. Write down every subgroup of \mathbb{Z}_5 . (You can use "generator" notation. For example, $\langle 1 \rangle = \{0, 1, 2, 3, 4\}$.)
- 2. Write down every subgroup of \mathbb{Z}_{10} .
- 3. Write down every subgroup of \mathbb{Z}_{70} .
- 4. Do you have a conjecture about the number of subgroups of cyclic groups?
- 5. How many surjective functions are there from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to \mathbb{Z}_2 ? How many injective functions?

Solutions. 1. Subgroups are: $\langle 0 \rangle$ and $\langle 1 \rangle$.

- 2. Subgroups are: $\langle 0 \rangle$, $\langle 5 \rangle$, $\langle 2 \rangle$, and $\langle 1 \rangle$.
- 3. Subgroups are: $\langle 0 \rangle$, $\langle 35 \rangle$, $\langle 14 \rangle$, $\langle 10 \rangle$, $\langle 7 \rangle$, $\langle 5 \rangle$, $\langle 2 \rangle$, and $\langle 1 \rangle$.
- 4. For any positive integer n, the subgroups of \mathbb{Z}_n are in one-to-one correspondence with the (positive integer) divisors of n.
- 5. There are 14 surjective functions (the only two nonsurjective functions out of the 16 total functions are: the one that maps everything to 0 and the one that maps everything to 1) and 0 injective functions.

2 Proofs

(I) Let G, H be groups with identities, e_G, e_H , respectively. Prove that $\{(e_G, h) \mid h \in H\}$ is a subgroup of $G \times H$. (A similar proof shows that $\{(g, e_H) \mid g \in G\}$ is a subgroup of $G \times H$, but you don't need to write this up.)

Proof. Let's write K for $\{(e_G, h) \mid h \in H\}$.

- Since $(e_G, e_H) \in K$, we see $K \neq \emptyset$.
- Choose any $(e_G, h_1), (e_G, h_2) \in K$, then note that

$$(e_G, h_1)(e_G, h_2) = (e_G e_G, h_1 h_2) = (e_G, h_1 h_2) \in K.$$

• Finally, if we choose any $(e_G, h) \in K$, we recall that the inverse of (e_G, h) is (e_G, h^{-1}) ; and (e_G, h^{-1}) is in K by definition of K.

Thus, we see that K is a subgroup of $G \times H$ by the subgroup test.

(II) Let G be a group, and define

$$C = \{g \in G \mid \text{for all } x \in G, xg = gx\}.$$

Prove that C is a subgroup of G.

Proof. Let's write e for the identity element of G.

- By the definition of identity element, we know that for any $g \in G$, we have eg = ge = g, so that $e \in C$ by definition. In particular, we see $C \neq \emptyset$.
- Choose any $g, h \in C$. To show that $gh \in C$, choose any $x \in C$ and note that associativity and the definition of C tell us:

$$x(gh) = (xg)h = (gx)h = g(xh) = g(hx) = (gh)x,$$

so $gh \in C$.

• Finally choose any $g \in C$. To show $g^{-1} \in C$, we choose any $x \in G$ and use Shoes and Socks and the definition of C to compute

$$xg^{-1} = (gx^{-1})^{-1} = (x^{-1}g)^{-1} = g^{-1}x.$$

Thus, we see $g^{-1} \in C$. Could we have done this without Shoes and Socks? Yes! "Use the fact that G is a group and the definition of C to compute

$$xg^{-1} = e\left(xg^{-1}\right) = \left(g^{-1}g\right)\left(xg^{-1}\right) = g^{-1}(gx)g^{-1} = g^{-1}(xg)g^{-1} = \left(g^{-1}x\right)\left(gg^{-1}\right) = \left(g^{-1}x\right)e = g^{-1}x,$$
so $g^{-1} \in \mathbb{C}$."

(III) Let G be a group, let H be a subgroup of G, and choose any $g \in G$. Let's use the notation

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

Prove gHg^{-1} is a subgroup of G.

Proof. Like normal, we'll write e for the identity of G and we'll apply the subgroup test.

- We know from class that $e \in H$ since H is a subgroup. Then $e = gg^{-1} = geg^{-1} \in gHg^{-1}$ by the definition of gHg^{-1} .
- Suppose that gh_1g^{-1} , $gh_2g^{-1} \in gHg^{-1}$. Since H is a subgroup, we know $h_1h_2 \in H$, so

$$\left(gh_{1}g^{-1}\right)\left(gh_{2}g^{-1}\right)=gh_{1}\left(g^{-1}g\right)h_{2}g^{-1}=gh_{1}\left(e\right)h_{2}g^{-1}=g\left(h_{1}h_{2}\right)g^{-1}\in gHg^{-1}.$$

• Finally, choose any $ghg^{-1} \in gHg^{-1}$. Since H is a subgroup, we know $h^{-1} \in H$, so

$$ghg^{-1}(gh^{-1}g^{-1}) = gh(g^{-1}g)h^{-1}g^{-1} = g(hh^{-1})g^{-1} = g(e)g^{-1} = gg^{-1} = e,$$

we see that

$$(ghg^{-1})^{-1} = gh^{-1}g^{-1} \in gHg^{-1}. \tag{\dagger}$$

Here we used the fact from class again. That is, we deduced that (\dagger) was true by computing $ghg^{-1}(gh^{-1}g^{-1})$ without needing to compute $(gh^{-1}g^{-1})ghg^{-1}$.

(IV) Let A be a set and $a \in A$. Define

$$G = \{ f \in S_A \mid f(a) = a \}.$$

Prove that G is a subgroup of S_A .

Proof. Let's write I for id_A . We have to prove three things.

- Since I(a) = a by the definition of the identity function, we see that $I \in G$; in particular, we see $G \neq \emptyset$.
- Suppose that $g, h \in G$. Then, by the definition of G (twice),

$$g \circ h(a) = g(h(a)) = g(a) = a$$
;

hence, we see that $g \circ h \in G$ by the definition of G.

• Finally, choose any $g \in G$. By the definition of S_A , we know that g has an inverse—let's call it j. Then by the definition of G, of inverse, and identity, we see

$$j(a) = j(g(a)) = j \circ g(a) = I(a) = a,$$

so that $j \in G$ by the definition of G.