
HW 3 Solutions Due: 21 October 2025

1 Computations

1. Write down every subgroup of Z5. (You can use “generator” notation. For example, ⟨1⟩ = {0,1,2,3,4}.)

2. Write down every subgroup of Z10.

3. Write down every subgroup of Z70.

4. Do you have a conjecture about the number of subgroups of cyclic groups?

5. How many surjective functions are there from Z2 ×Z2 to Z2? How many injective functions?

Solutions. 1. Subgroups are: ⟨0⟩ and ⟨1⟩.

2. Subgroups are: ⟨0⟩, ⟨5⟩, ⟨2⟩, and ⟨1⟩.

3. Subgroups are: ⟨0⟩, ⟨35⟩, ⟨14⟩, ⟨10⟩, ⟨7⟩, ⟨5⟩, ⟨2⟩, and ⟨1⟩.

4. For any positive integer n, the subgroups of Zn are in one-to-one correspondence with the (positive
integer) divisors of n.

5. There are 14 surjective functions (the only two nonsurjective functions out of the 16 total functions are:
the one that maps everything to 0 and the one that maps everything to 1) and 0 injective functions.

2 Proofs

(I) Let G,H be groups with identities, eG, eH , respectively. Prove that {(eG, h) ∣ h ∈H} is a subgroup of
G ×H. (A similar proof shows that {(g, eH) ∣ g ∈ G} is a subgroup of G ×H, but you don’t need to
write this up.)

Proof. Let’s write K for {(eG, h) ∣ h ∈H}.

• Since (eG, eH) ∈K, we see K ≠ ∅.

• Choose any (eG, h1) , (eG, h2) ∈K, then note that

(eG, h1) (eG, h2) = (eGeG, h1h2) = (eG, h1h2) ∈K.

• Finally, if we choose any (eG, h) ∈ K, we recall that the inverse of (eG, h) is (eG, h
−1
); and

(eG, h
−1
) is in K by definition of K.

Thus, we see that K is a subgroup of G ×H by the subgroup test.
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(II) Let G be a group, and define

C = {g ∈ G ∣ for all x ∈ G, xg = gx} .

Prove that C is a subgroup of G.

Proof. Let’s write e for the identity element of G.

• By the definition of identity element, we know that for any g ∈ G, we have eg = ge = g, so that
e ∈ C by definition. In particular, we see C ≠ ∅.

• Choose any g, h ∈ C. To show that gh ∈ C, choose any x ∈ C and note that associativity and the
definition of C tell us:

x(gh) = (xg)h = (gx)h = g(xh) = g(hx) = (gh)x,

so gh ∈ C.

• Finally choose any g ∈ C. To show g−1 ∈ C, we choose any x ∈ G and use Shoes and Socks and the
definition of C to compute

xg−1 = (gx−1)
−1
= (x−1g)

−1
= g−1x.

Thus, we see g−1 ∈ C. Could we have done this without Shoes and Socks? Yes! “Use the fact that
G is a group and the definition of C to compute

xg−1 = e (xg−1) = (g−1g) (xg−1) = g−1(gx)g−1 = g−1(xg)g−1 = (g−1x) (gg−1) = (g−1x) e = g−1x,

so g−1 ∈ C.”

(III) Let G be a group, let H be a subgroup of G, and choose any g ∈ G. Let’s use the notation

gHg−1 = {ghg−1 ∣ h ∈H} .

Prove gHg−1 is a subgroup of G.

Proof. Like normal, we’ll write e for the identity of G and we’ll apply the subgroup test.

• We know from class that e ∈ H since H is a subgroup. Then e = gg−1 = geg−1 ∈ gHg−1 by the
definition of gHg−1.

• Suppose that gh1g
−1, gh2g

−1
∈ gHg−1. Since H is a subgroup, we know h1h2 ∈H, so

(gh1g
−1
) (gh2g

−1
) = gh1 (g

−1g)h2g
−1
= gh1 (e)h2g

−1
= g (h1h2) g

−1
∈ gHg−1.

• Finally, choose any ghg−1 ∈ gHg−1. Since H is a subgroup, we know h−1 ∈H, so

ghg−1 (gh−1g−1) = gh (g−1g)h−1g−1 = g (hh−1) g−1 = g (e) g−1 = gg−1 = e,

we see that
(ghg−1)

−1
= gh−1g−1 ∈ gHg−1. ( † )

Here we used the fact from class again. That is, we deduced that ( † ) was true by computing
ghg−1 (gh−1g−1) without needing to compute (gh−1g−1) ghg−1.
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(IV) Let A be a set and a ∈ A. Define
G = {f ∈ SA ∣ f(a) = a} .

Prove that G is a subgroup of SA.

Proof. Let’s write I for idA. We have to prove three things.

• Since I(a) = a by the definition of the identity function, we see that I ∈ G; in particular, we see
G ≠ ∅.

• Suppose that g, h ∈ G. Then, by the definition of G (twice),

g ○ h(a) = g(h(a)) = g(a) = a;

hence, we see that g ○ h ∈ G by the definition of G.

• Finally, choose any g ∈ G. By the definition of SA, we know that g has an inverse—let’s call it j.
Then by the definition of G, of inverse, and identity, we see

j(a) = j(g(a)) = j ○ g(a) = I(a) = a,

so that j ∈ G by the definition of G.
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