1 Computations

- 1. Write down every element of $\mathbb{Z}_3 \times \mathbb{Z}_3$, and write down its inverse. (For one example, note that the element (0,0) has inverse -(0,0) = (0,0).)
 - Solution. (0,0) has inverse -(0,0) = (0,0),
 - (1,0) has inverse -(1,0) = (2,0),
 - (2,0) has inverse -(2,0) = (1,0),
 - (0,1) has inverse -(0,1) = (0,2),
 - (1,1) has inverse -(1,1) = (2,2),
 - (2,1) has inverse -(2,1) = (1,2),
 - (0,2) has inverse -(0,2) = (0,1),
 - (1,2) has inverse -(1,2) = (2,1), and
 - (2,2) has inverse -(2,2) = (1,1).
- 2. Write down every multiple of (1,1) in the group $\mathbb{Z}_6 \times \mathbb{Z}_3$.

Solution.
$$\{n(1,1) \mid n \in \mathbb{Z}\} = \{(1,1),(2,2),(3,0),(4,1),(5,2),(0,0)\}.$$

3. Write down three elements (a,b) of $\mathbb{Z}_6 \times \mathbb{Z}_3$ with the property

$$|\{n(a,b) \mid n \in \mathbb{Z}\}| = 3.$$

Solution. There are 8 such elements: (2,0), (4,0), (0,1), (2,1), (4,1), (0,2), (2,2), (4,2).

4. For now and for the rest of the class, for any positive integer n, we will write

$$\mathbb{B}^n = \overbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}^{n \text{ times}}.$$

Furthermore, in this situation only, we will allow ourselves to omit commas and parentheses when writing elements of these sets; as an example, we will write $1100 \in \mathbb{B}^4$.

- (a) How many elements of \mathbb{B}^3 have exactly two 1s?
- (b) How many elements of \mathbb{B}^4 have exactly two 1s?
- (c) How many elements of \mathbb{B}^5 have exactly two 1s?
- (d) Let $n \in \mathbb{Z}_{\geq 2}$. Write down a formula for the number of elements of \mathbb{B}^n with exactly two 1s. (No proof required.)

Solution. (a) 3.

- (b) 6.
- (c) 10.
- (d) There is more than one way to write down a formula, but one could write:

$$\binom{n}{2} = \frac{n(n-1)}{2},$$

or one could define a sequence by setting $a_2 = 1$, and defining, for all $n \in \mathbb{Z}_{\geq 2}$:

$$a_{n+1} = a_n + n.$$

2 Proofs

(I) Let G be a group with identity elements e_1, e_2 . Prove that $e_1 = e_2$.

Proof. Note that by the definition of identity element,

$$e_1 = e_1 e_2$$
 (e_2 is an identity, so we scale e_1 by e_2 on the right)
= e_2 (e_1 is also an identity, so we scale e_2 by e_1 on the left).

(II) Let G, H be groups. Prove that if G, H are both abelian, then $G \times H$ is abelian.

Proof. Choose any $(a,b),(c,d) \in G \times H$. Note that

$$(a,b)(c,d) = (ac,bd)$$
 (definition of products of groups)
= (ca,db) (both G and H are abelian)
= $(c,d)(a,b)$ (definition of products of groups).

(III) Let G be a group, and let $g, h \in G$. Assume that

for all $x \in G$, we have xq = qx.

Prove that

for all
$$x \in G$$
, we have $x(hgh^{-1}) = (hgh^{-1})x$.

Proof. Let's write e for the identity element of G. Choose any $x \in G$ and note that

$$x(hgh^{-1}) = ((xh)g)h^{-1}$$
 (associativity)
 $= (g(xh))h^{-1}$ (by hypothesis, applied to (xh))
 $= (gx)(hh^{-1})$ (associativity)
 $= gx$ (definition of inverse)
 $= gex$ (definition of identity)
 $= g(hh^{-1})x$ (definition of inverse)
 $= (gh)(h^{-1}x)$ (associativity)
 $= (hg)(h^{-1}x)$ (by hypothesis, applied to h)
 $= (hgh^{-1})x$ (associativity).

(IV) One might remark that for any positive integer n, every element of \mathbb{B}^n is its own inverse. Prove: if G is a group with the property that every element is its own inverse, then G is abelian.

Proof. Let e be the identity of G. Choose any $g, h \in G$ and note

$$gh = (gh)e$$
 (definition of identity)
 $= gh((hg)(hg))$ (by hypothesis, applied to hg)
 $= g(hh)ghg$ (associativity)
 $= geghg$ (by hypothesis, applied to h)
 $= (gg)hg$ (definition of identity)
 $= ehg$ (by hypothesis, applied to g)
 $= hg$ (definition of identity),

so G is abelian.