Math 261

Name:_____

- Put your name in the "_____" above.
- Answer all questions.
- Solutions are graded for correctness, clarity, rigor, neatness.
- Good luck!
- 1. Let

	[1	2	3]			[2]	
<i>A</i> =	4	5	6	and	b =	5	
	7	8	9		b =	8	

Writing $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, find all solutions to the matrix equation

 $A\mathbf{x} = \mathbf{b}.$

2. Suppose that

- B is a 2×3 matrix,
- C is a 3×2 matrix,
- D is a 3×3 matrix, and
- E is a 2×1 matrix.

For each of the following matrix expressions, either tell me the size of the matrix or write "Undefined."

(a) BC

(b) CB

(c) B + C

(d) C + B

(e) *BD*

(f) BE

(g) BDC

- 3. Define a function $T: \mathbb{R}^2 \to \mathbb{R}^2$ by letting $T(\mathbf{x})$ be the vector obtained by rotating \mathbf{x} counterclockwise by 270° (which is the same as $\frac{3\pi}{2}$ radians).
 - (a) Compute

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$$

(b) You may assume that T is a linear transformation. Find a matrix F such that for all $\mathbf{x} \in \mathbb{R}^2$,

 $T(\mathbf{x}) = F\mathbf{x}.$

4. Let

$$G = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 6 \\ 1 & 1 & 2 \end{bmatrix}.$$

Find G^{-1} , if it exists.

5. (a) Write a system of two linear equations in two variables that has infinitely many solutions.

(b) Solve your system from part (a).

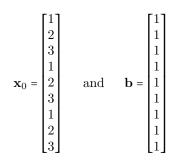
6. Let

$$H = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

(a) Let E_1 be the elementary matrix associated to scaling row two of H by 2. What is E_1 ?

- (b) Let E_2 be the elementary matrix associated to adding $(-1) \cdot (row \text{ one})$ to row two. What is E_2 ?
- (c) Let E_3 be the elementary matrix associated to adding $(-1) \cdot (row three)$ to row two. What is E_3 ?

(d) What is $E_3E_2E_1H$?


7. Suppose that a is a real number, and let

$$J = \begin{bmatrix} a & 2a \\ 3a & 4a+2 \end{bmatrix}.$$

For which values of a is J invertible? (Hint: first consider the case where a = 0, then consider all other cases.)

Extra credit

Let

Write down a 9×9 matrix J such that

 $J\mathbf{x} = \mathbf{b}$ has infinitely many solutions and $J\mathbf{x} = \mathbf{b}$ has \mathbf{x}_0 as a solution.