Name:

- Put your name in the "_____ " above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!
- 1. Let

$$A = \begin{bmatrix} 2 & -75 & 0 \\ 0 & -3 & 0 \\ 0 & -10 & 2 \end{bmatrix}.$$

- (a) What are the eigenvalues of A and what are their algebraic multiplicities?
- (b) For every eigenvalue found in part (a), find the dimension of its associated eigenspace. (In other words: find the geometric multiplicity of every eigenvalue of A).
- (c) Is A diagonalizable? How do you know?

Solution. (a) We compute the characteristic polynomial of A:

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda - 2 & 75 & 0 \\ 0 & \lambda + 3 & 0 \\ 0 & 10 & \lambda - 2 \end{bmatrix} = (\lambda - 2) \det\begin{bmatrix} \lambda + 3 & 0 \\ 10 & \lambda - 2 \end{bmatrix} = (\lambda - 2)^2 (\lambda + 3),$$

so we see that the eigenvalues of A are -3, 2, with algebraic multiplicities 1, 2, respectively.

(b) • For $\lambda = -3$,

$$\begin{bmatrix} -5 & 75 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 10 & -5 & 0 \end{bmatrix}$$

has one free variable, so the eigenvalue $\lambda = -3$ has geometric multiplicity 1.

• For $\lambda = 2$,

$$\begin{bmatrix} 0 & 75 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 10 & 0 & 0 \end{bmatrix}$$

has one two variables, so the eigenvalue $\lambda = 2$ has geometric multiplicity 2.

(c) Since the geometric multiplicities of the eigenvalues of A equal the algebraic multiplicities of the eigenvalues of A, we know that A is diagonalizable.

2. Give an example of:

- (a) a 3×2 matrix with a one-dimensional null space.
- (b) a 2×2 matrix that is invertible but not diagonalizable.
- (c) a 2×2 matrix that is diagonalizable but not invertible.
- (d) a 4×4 matrix with exactly two eigenvalues.
- (e) a 5×5 matrix with rank 2.
- (f) a 2×2 matrix with characteristic equation $\lambda^2 4\lambda + 3$.

Proof. Some examples are

- $(a) \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix},$
- (b) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
- (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- $(d)\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}$
- $(f) \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}.$

3. Suppose that $k \in \mathbb{R}$ and let

$$B = \begin{bmatrix} k & k^2 & k^3 \\ -k & k - k^2 & 3 - k^3 \\ 0 & -2 & k - 5 \end{bmatrix}$$

For which value(s) of k does B have rank 3?

Solution. We compute:

$$\det \begin{bmatrix} k & k^2 & k^3 \\ -k & k - k^2 & 3 - k^3 \\ 0 & -2 & k - 5 \end{bmatrix} = \det \begin{bmatrix} k & k^2 & k^3 \\ 0 & k & 3 \\ 0 & -2 & k - 5 \end{bmatrix} = k \cdot \det \begin{bmatrix} k & 3 \\ -2 & k - 5 \end{bmatrix} = k (k(k-5) + 6) = k(k-2)(k-3),$$

so B has rank 3 when
$$k \in (-\infty, 0) \cup (0, 2) \cup (2, 3) \cup (3, \infty)$$
.

4. Define a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ by the rule

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ x \\ 3x+y+z \\ 5x+3y+3z \end{bmatrix}.$$

Let C be the matrix for T.

- (a) What is C?
- (b) Find a basis for im(T).

Solution. (a) Since

$$T(\mathbf{e}_1) = \begin{bmatrix} 1\\1\\3\\5 \end{bmatrix}, \quad T(\mathbf{e}_2) = \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix}, \quad T(\mathbf{e}_3) = \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix},$$

we see that

$$C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 3 & 1 & 1 \\ 5 & 3 & 3 \end{bmatrix}.$$

(b) We row reduce

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 3 & 1 & 1 \\ 5 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & -2 & -2 \\ 0 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

so a basis for im
$$(T)$$
 is $\left\{\begin{bmatrix}1\\1\\3\\5\end{bmatrix},\begin{bmatrix}1\\0\\1\\3\end{bmatrix}\right\}$.

5. Define the line

$$L = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} + t \begin{bmatrix} 1\\1\\1 \end{bmatrix} \middle| t \in \mathbb{R} \right\}$$

and for $a \in \mathbb{R}$, define the line

$$M = \left\{ \begin{bmatrix} a^2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \middle| t \in \mathbb{R} \right\}$$

For which value(s) of a do the lines L and M intersect?

Solution. We row reduce

$$\begin{bmatrix} 1 & -1 & a^2 - 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & a^2 - 1 \\ 0 & 1 & -a^2 \\ 0 & 0 & -a^2 + 1 \end{bmatrix},$$

which has a solution exactly when $-a^2+1=0$; that is, when $a\in\{-1,1\}$.

6. Let

$$\mathbf{u} = \begin{bmatrix} 2\\1\\-5\\-8 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 3\\2\\-9\\-14 \end{bmatrix}$$

and define

$$V = \{ \mathbf{x} \in \mathbb{R}^4 \mid \mathbf{x} \cdot \mathbf{u} = 0 \text{ and } \mathbf{x} \cdot \mathbf{v} = 0 \}.$$

Assuming V is a subspace of \mathbb{R}^4 (which it is), find a basis for V.

Solution. We row reduce

$$\begin{bmatrix} 2 & 1 & -5 & -8 & | & 0 \\ 3 & 2 & -9 & -14 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & -5 & -8 & | & 0 \\ 1 & 1 & -4 & -6 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -4 & -6 & | & 0 \\ 0 & -1 & 3 & 4 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -2 & | & 0 \\ 0 & 1 & -3 & -4 & | & 0 \end{bmatrix},$$

which has basis of solutions
$$\left\{\begin{bmatrix}1\\3\\1\\0\end{bmatrix},\begin{bmatrix}2\\4\\0\\1\end{bmatrix}\right\}$$
.

7. Find a formula in terms of k for the entries of A^k , where A is the diagonalizable matrix below and $P^{-1}AP = D$ for the matrices P and D below:

$$A = \begin{bmatrix} -7 & 10 \\ -5 & 8 \end{bmatrix}, \qquad P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \qquad \text{and} \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}.$$

Solution. First, we compute the inverse of P:

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}.$$

Then we note that for any nonnegative integer k,

$$A^k = \begin{pmatrix} PDP^{-1} \end{pmatrix}^k = PD^kP^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3^k & 0 \\ 0 & (-2)^k \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -3^k & 2 \cdot 3^k \\ (-1)^k 2^k & (-1)^{k+1} 2^k \end{bmatrix} = \begin{bmatrix} -3^k + (-1)^k 2^{k+1} & 2 \cdot 3^k + (-1)^{k+1} 2^{k+1} \\ -3^k + (-1)^k 2^k & 2 \cdot 3^k + (-1)^{k+1} 2^k \end{bmatrix}.$$

П