Name:_____

- Put your name in the "_____" above.
- Write your answers down neatly, use complete sentences, and *justify your work*.
- Good luck!
- 1. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}.$$

Writing $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, find all solutions to the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

Answer. We solve by row reducing:

$$\begin{bmatrix} 1 & 2 & 3 & | & 2 \\ 4 & 5 & 6 & | & 5 \\ 7 & 8 & 9 & | & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & | & 2 \\ 0 & -3 & -6 & | & -3 \\ 0 & -6 & -12 & | & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & | & 2 \\ 0 & -3 & -6 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & | & 2 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Thus, all solutions are of the form

$$\mathbf{x} = \begin{bmatrix} t \\ 1 - 2t \\ t \end{bmatrix}$$

2. Suppose that

(a) BC

- *B* is a 2×3 matrix,
- C is a 3×2 matrix,
- D is a 3×3 matrix, and
- E is a 2×1 matrix.

For each of the following matrix expressions, either tell me the size of the matrix or write "Undefined."

	Answer.	This is a 2×2 matrix.	
(b)	CB		
	Answer.	This is a 3×3 matrix.	
(c)	B + C		
	Answer.	Undefined.	
(d)	C + B		
	Answer.	Undefined.	

(e) BD

Answer. This is a 2×3 matrix.

(f) BE

Answer. Undefined.

(g) BDC

Answer. This is a 2×2 matrix.

 $3. \ {\rm Let}$

$$F = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 6 \\ 1 & 1 & 2 \end{bmatrix}.$$

Find F^{-1} , if it exists.

Proof. We solve by row reducing:

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 1 & 6 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -7 & -6 & -4 & 1 & 0 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & -1 \\ 0 & -7 & -6 & -4 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 & 1 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -4 & -1 & 9 \\ 0 & 1 & 0 & -2 & -1 & 6 \\ 0 & 0 & 1 & 3 & 1 & -7 \end{bmatrix}$$
so
$$F^{-1} = \begin{bmatrix} -4 & -1 & 9 \\ -2 & -1 & 6 \\ 3 & 1 & -7 \end{bmatrix}.$$

 (a) Write a system of two linear equations in two variables that has infinitely many solutions. Answer. One example is:

$$\begin{aligned} x + y &= 0\\ x + y &= 0. \end{aligned}$$

(b) Solve your system from part (a).

Answer. We solve by row reducing:

$$\begin{bmatrix} 1 & 1 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix},$$

so the solutions to my example from (a) are of the form

$$\begin{aligned} x &= -t \\ y &= t. \end{aligned}$$

5. Suppose that a is a real number, and let

$$G = \begin{bmatrix} a & 2a \\ 3a & 4a+2 \end{bmatrix}.$$

For which values of a is G invertible?

Answer. If a = 0, then the first column is all 0s, so there is no pivot in the first column of [G|I], and we see that G is not invertible in this case.

On the other hand, if $a \neq 0$, we solve by row reducing:

$$\begin{bmatrix} a & 2a & 1 & 0 \\ 3a & 4a+2 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & \frac{1}{a} & 0 \\ 3a & 4a+2 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & \frac{1}{a} & 0 \\ 0 & -2a+2 & -3 & 1 \end{bmatrix}.$$

This system is solvable precisely when $-2a + 2 \neq 0$ —that is, when $a \neq 1$. Thus,

- when $a \in (-\infty, 0) \cup (0, 1) \cup (1, \infty)$, the matrix G is invertible and
- when a = 0, 1, the matrix G is not invertible.

6. Let

$$H = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

(a) Let E_1 be the elementary matrix associated to scaling row two of H by 2. What is E_1 ? Answer.

 E_1

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b) Let E_2 be the elementary matrix associated to adding $(-1) \cdot (row \text{ one})$ to row two. What is E_2 ? Answer.

$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$	Γ	1 (0	[0
	=	-1 1	1	0.
		0 (0	1

(c) Let E_3 be the elementary matrix associated to adding $(-1) \cdot (\text{row three})$ to row two. What is E_3 ? Answer.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(d) What is $E_3E_2E_1H$?

Answer. We perform the row operations mentioned above to obtain

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 7 & 8 & 9 \end{bmatrix}.$$

Extra Credit

Let

$$\mathbf{x}_{0} = \begin{bmatrix} 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 2\\ 3\\ 1\\ 1\\ 2\\ 3\end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\end{bmatrix}$$

Write down a 9×9 matrix J such that

 $J\mathbf{x} = \mathbf{b}$ has infinitely many solutions and $J\mathbf{x} = \mathbf{b}$ has \mathbf{x}_0 as a solution.

Answer. One example is

[1	0	0	0	0	0	0	0	[0
1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0.
1	0	0	0	0	0	0	0	0
1 1 1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
[1	0	0	0	0	0	0	0	0