Name: Name and the set of the set o

- Put your name in the " " above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!
- 1. Let

where a is a real number. Consider the matrix equation

 $A\mathbf{x} = \mathbf{0}$.

For which values of a does this equation have:

- (a) no solutions,
- (b) exactly one solution, and
- (c) infinitely many solutions?

Solution. Since the matrix is homogeneous, it always has at least one solution. It has infinitely many solutions precisely when A is not invertible. Since det $(A) = -(8 - 2a^2) = 2(a+2)(a-2)$, we conclude that the equation

- (a) never has no solutions,
- (b) has exactly one solution when $a \in (-\infty, -2) \cup (-2, 2) \cup (2, \infty)$, and
- (c) infinitely many solutions when $a \in \{-2, 2\}.$

2. Let

$$
C = \begin{bmatrix} 1 & -4 \\ 2 & 7 \end{bmatrix}.
$$

- (a) Find all the eigenvalues of C.
- (b) For each eigenvalue of C, find an associated eigenvector of C.

Solution.

Since det $(C - \lambda I) = (1 - \lambda)(7 - \lambda) + 8 = \lambda^2 - 8\lambda + 15 = (\lambda - 3)(\lambda - 5)$, we know C has exactly two eigenvalues: 3 and 5.

 \Box

Since

$$
C - 3I = \begin{bmatrix} -2 & -4 \\ 2 & 4 \end{bmatrix},
$$

one eigenvector for $\lambda = 3$ is $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ and since

$$
C-5I=\begin{bmatrix}-4 & -4\\ 2 & 2\end{bmatrix},
$$

one eigenvector for $\lambda = 5$ is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$

3. Suppose that $v =$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2$ 0 1 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . Define a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$
T(\mathbf{x}) = \text{proj}_{\mathbf{v}}(\mathbf{x}).
$$

Let B be the matrix for T .

- (a) What is B ?
- (b) What is the rank of B?

Solution. (a) We compute

i. $T(\mathbf{e}_1) = \frac{\mathbf{e}_1 \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{0}{2} \mathbf{v} = \mathbf{0},$ ii. $T(\mathbf{e}_2) = \frac{\mathbf{e}_2 \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{1}{2} \mathbf{v},$ iii. $T(\mathbf{e}_3) = \frac{\mathbf{e}_3 \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{1}{2} \mathbf{v},$ so

$$
B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.
$$

(b) The rank of B is one. (In fact, since the range of T is span $\{v\}$, we can come to this conclusion without completing part (a).)

 \Box

- 4. (a) Write down a 2×2 matrix with exactly 2 distinct eigenvalues.
	- (b) Write down a 2×2 matrix with no eigenvalues.
	- (c) Write down a 3×3 matrix with exactly 2 distinct eigenvalues.
	- (d) Write down a 4×4 matrix with exactly 2 distinct eigenvalues.

Solution. For example, the following matrices would work:

(a)
$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
$$
 and (b) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and (d) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

 \Box

r.

5. Let

$$
\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
$$

and let

$$
U = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{u} \cdot \mathbf{x} = 0 \right\} \quad \text{and} \quad V = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{u} \cdot \mathbf{x} = 0 \text{ and } \mathbf{v} \cdot \mathbf{x} = 0 \right\}.
$$

Find bases for U and V .

Solution. • For U, we must solve a homogeneous matrix equation, so we row reduce $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$. This system as two free variables, so a basis for U is

$$
\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}.
$$

• For V , we must solve a system of two equations, so we row reduce

$$
\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}.
$$

This system has one free variable, so a basis for V is

$$
\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}.
$$

6. Let

- R be the plane in \mathbb{R}^3 given by the equation $x + 2y + 3z = 0$,
- *S* be the plane in \mathbb{R}^3 given by the plane $x + y + z = 0$,

• *L* be the line with direction
$$
\mathbf{d} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}
$$
 that contains the vector $\mathbf{v} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$, and

- M the line of intersection of the planes R and S .
- (a) Where does L intersect S ?
- (b) What is M?
- (c) Do L and M intersect? If so, where do they intersect?

Solution. (a) We must find t such that $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2$ $-t+5$ $t+5$ $-t+5$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ satisfies $x + y + z = 0$; that is, such that $(-t+5)+(t+5)+(-t+5)=0.$

We find $t = 15$, so L and S intersect at

$$
15\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} -10 \\ 20 \\ -10 \end{bmatrix}.
$$

(b) In fact, we found the intersection of these planes in Question 5. The line is

$$
\text{span}\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\} = \left\{ t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \middle| t \in \mathbb{R} \right\}.
$$

(c) We ask the question: are there $s, t \in \mathbb{R}$ such that

$$
s \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}?
$$

To answer this question, we row reduce the augmented matrix

$$
\begin{bmatrix} -1 & -1 & -5 \ 1 & 2 & -5 \ -1 & -1 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 5 \ 0 & 1 & -10 \ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 15 \ 0 & 1 & -10 \ 0 & 0 & 0 \end{bmatrix}
$$

to find $s = 15, t = -10$. Thus, the point of intersection is

$$
15\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} -10 \\ 20 \\ -10 \end{bmatrix} = (-10)\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}
$$

- on the plane $x + y + z = 0$,
- on the plane $x = 1$, and
- are of length $\sqrt{14}$.

Solution. Let's find $a, b, c \in \mathbb{R}$ such that $\left[\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right]$ a b c $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ satisfy the three conditions given in the problem. The second bullet tells us that $a = 1$, and the first tells us that $c = -b - 1$. Thus, we must find b such that

$$
\sqrt{14} = \sqrt{1^2 + b^2 + (-b - 1)^2}.
$$

Squaring, we solve

$$
14 = 1^2 + b^2 + (-b - 1)^2 = 2b^2 + 2b - 12 = 2(b + 3)(b - 2),
$$

and find $b = -3, 2$. Thus, two vectors that satisfy the requirements of the problem are

$$
\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}
$$

.

 \Box

 \Box