Name:_____

- Put your name in the "_____" above.
- Answer all questions.
- Proofs are graded for clarity, rigor, neatness, and style.
- Good luck!
- 1. Let

$$A = \begin{bmatrix} 4 & 2a & a \\ 0 & 0 & 1 \\ a & 2 & 3 \end{bmatrix},$$

where a is a real number. Consider the matrix equation

 $A\mathbf{x} = \mathbf{0}.$

For which values of a does this equation have:

- (a) no solutions,
- (b) exactly one solution, and
- (c) infinitely many solutions?

2. Let

$$C = \begin{bmatrix} 1 & -4 \\ 2 & 7 \end{bmatrix}.$$

- (a) Find all the eigenvalues of C.
- (b) For each eigenvalue of C, find an associated eigenvector of C.

3. Suppose that $\mathbf{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Define a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

 $T(\mathbf{x}) = \operatorname{proj}_{\mathbf{v}}(\mathbf{x}).$

Let B be the matrix for T.

- (a) What is B?
- (b) What is the rank of B?

- 4. (a) Write down a 2×2 matrix with exactly 2 distinct eigenvalues.
 - (b) Write down a 2×2 matrix with no eigenvalues.
 - (c) Write down a 3×3 matrix with exactly 2 distinct eigenvalues.
 - (d) Write down a 4×4 matrix with exactly 2 distinct eigenvalues.

5. Let

$$\mathbf{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

and let

$$U = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{u} \cdot \mathbf{x} = 0 \right\} \text{ and } V = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{u} \cdot \mathbf{x} = 0 \text{ and } \mathbf{v} \cdot \mathbf{x} = 0 \right\}.$$

Find bases for U and V.

6. Let

- R be the plane in \mathbb{R}^3 given by the equation x + 2y + 3z = 0,
- S be the plane in \mathbb{R}^3 given by the plane x + y + z = 0,

• *L* be the line with direction
$$\mathbf{d} = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}$$
 that contains the vector $\mathbf{v} = \begin{bmatrix} 5\\5\\5 \end{bmatrix}$, and

• M the line of intersection of the planes R and S.

- (a) Where does L intersect S?
- (b) What is M?
- (c) Do L and M intersect? If so, where do they intersect?

- 7. Find two vectors \mathbf{v}, \mathbf{w} in \mathbb{R}^3 that are
 - on the plane x + y + z = 0,
 - on the plane x = 1, and
 - are of length $\sqrt{14}$.