The Unit Circle

Barry Fadness

The maps $\mu(w, z) = w \cdot z$ and $\iota(w) = w^{-1}$ are differentiable.

Proof. One says that " μ is differentiable" if the function $f(\phi, \theta) = \phi + \theta$ is differentiable. We check that each partial derivative is continuous at (ϕ, θ) .

$$f_{\phi} = f_{\theta} = 1$$

For the map ι we take the ordinary derivative of $g(\phi) = -\phi$.

$$g'(\phi) = -1$$

Because S^1 is a topological space, a group, and both maps above are differentiable we call it a *Lie group*.

The Lie algebra of a Lie group G is usually denoted by \mathfrak{g} . One studies \mathfrak{g} and then returns to G with the *exponential map*

$$\exp:\mathfrak{g}\to G$$

The map $\exp: \mathbb{R} \to S^1$ turns out to be

$$\exp(\theta) = e^{i\theta} = \cos\theta + i\sin\theta$$

A *representation* of a Lie group G in a vector space V is a homomorphism

 $\rho: G \to \operatorname{Aut}(V)$

The map $\varphi: S^1 \to GL(2,\mathbb{R})$ is a representation of S^1 in \mathbb{R}^2 defined by

$$\varphi(z) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

There is a natural representation of G in \mathfrak{g} written as

$$\operatorname{Ad}: G \to \operatorname{Aut}(\mathfrak{g})$$

where Ad stands for *adjoint*.

For the unit circle each (unitary) irreducible representation is of the form

$$\rho_n(z) = z^n \quad n \in \mathbb{Z}$$

The set $\{\rho_n\} \cong \mathbb{Z}$ is called the *dual group* of S^1 .

The Fourier transform of a function $f:\mathbb{R}\to\mathbb{C}$ is given by

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{2\pi i s t} f(t) dt, \quad s \in \mathbb{R}$$

For some $f: S^1 \to \mathbb{C}$ the formula is

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} e^{in\phi} f(\phi) \, d\phi \,, \quad n \in \mathbb{Z}$$

References

- Timothy Gowers, editor. The Princeton Companion to Mathematics. Princeton University Press, 2010.
- [2] A. A. Kirillov. Elements of the Theory of Representations. Springer, 1976.
- [3] Wikipedia. Circle group.

https://en.wikipedia.org/wiki/circle_group, 2015.