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Have you ever played a “math puzzle”
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Mathematicians play with puzzles like these to help answer difficult
questions.

Today, we are going to explore these puzzles and uncover some
difficult problems they solve!
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The space of symmetric functions with n variables

f (x1, ..., xn) is a symmetric function with n variables if

f (x1, ..., xn) = f (xi1 , ..., xin) where xi1 , ..., xin is any rearrangement of the
variables x1, ...., xn.

Example (three variables)

f (x1, x2, x3) = x1x2x3,

g(x1, x2, x3) = x2
1x2x3 + x1x2

2x3 + x1x2x2
3
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Question

Is there a way we can write the “minimal” amount of these functions so
that any symmetric function can be written as a linear combination of
these “minimal” ones?

Question

What is a basis for the algebra of symmetric functions with n variables?

Yes! They are called Schur polynomials!
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Definition of Schur Polynomial

Let x̄ = (x1, x2, . . . , xn) be n variables.

A partition is a collection of integers λ = (λ1, λ2, . . . , λn) that are weakly
decreasing, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Call |λ| =

∑n
i=1 λi the weight of λ.

Definition

For each partition λ, the Schur polynomial is defined as

sλ(x̄) =

∣∣∣xn+λj−j
i

∣∣∣
1≤i ,j≤n∣∣∣xn−j

i

∣∣∣
1≤i ,j≤n

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 6 / 54



Definition of Schur Polynomial

Let x̄ = (x1, x2, . . . , xn) be n variables.

A partition is a collection of integers λ = (λ1, λ2, . . . , λn) that are weakly
decreasing, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Call |λ| =
∑n

i=1 λi the weight of λ.

Definition

For each partition λ, the Schur polynomial is defined as

sλ(x̄) =

∣∣∣xn+λj−j
i

∣∣∣
1≤i ,j≤n∣∣∣xn−j

i

∣∣∣
1≤i ,j≤n

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 6 / 54



Definition of Schur Polynomial

Let x̄ = (x1, x2, . . . , xn) be n variables.

A partition is a collection of integers λ = (λ1, λ2, . . . , λn) that are weakly
decreasing, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Call |λ| =

∑n
i=1 λi the weight of λ.

Definition

For each partition λ, the Schur polynomial is defined as

sλ(x̄) =

∣∣∣xn+λj−j
i

∣∣∣
1≤i ,j≤n∣∣∣xn−j

i

∣∣∣
1≤i ,j≤n

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 6 / 54



Definition of Schur Polynomial

Let x̄ = (x1, x2, . . . , xn) be n variables.

A partition is a collection of integers λ = (λ1, λ2, . . . , λn) that are weakly
decreasing, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Call |λ| =

∑n
i=1 λi the weight of λ.

Definition

For each partition λ, the Schur polynomial is defined as

sλ(x̄) =

∣∣∣xn+λj−j
i

∣∣∣
1≤i ,j≤n∣∣∣xn−j

i

∣∣∣
1≤i ,j≤n

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 6 / 54



Definition of Schur Polynomial

x̄ = (x1, ..., xn),
λ = (λ1, λ2, . . . , λn)

sλ(x̄) =

∣∣∣∣∣∣∣∣∣
xn+λ1−1
1 xn+λ2−2

1 xn+λ3−3
1 . . . xn+λn−n

1

xn+λ1−1
2 xn+λ2−2

2 xn+λ3−3
2 . . . xn+λn−n

2
...

...
...

. . .
...

xn+λ1−1
n xn+λ2−2

n xn+λ3−3
n . . . xn+λn−n

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn−1
1 xn−2

1 xn−3
1 . . . xn−n

1

xn−1
2 xn−2

2 xn−3
2 . . . xn−n

2
...

...
...

. . .
...

xn−1
n xn−2

n xn−3
n . . . xn−n

n

∣∣∣∣∣∣∣∣∣
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Example: Schur Polynomial

n = 2, λ = (3, 1)

λ1 = 3

λ2 = 1.

sλ(x1, x2) =

∣∣∣∣∣x2+λ1−1
1 x2+λ2−2

1

x2+λ1−1
2 x2+λ2−2

2

∣∣∣∣∣∣∣∣∣x2−1
1 x2−2

1

x2−1
2 x2−2

2

∣∣∣∣
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Example: Schur Polynomial

n = 2, λ = (3, 1)

λ1 = 3

λ2 = 1.

sλ(x1, x2) =

∣∣∣∣x2+3−1
1 x2+1−2

1

x2+3−1
2 x2+1−2

2

∣∣∣∣∣∣∣∣x2−1
1 x2−2

1

x2−1
2 x2−2

2

∣∣∣∣
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Example: Schur Polynomial

n = 2, λ = (3, 1)

λ1 = 3

λ2 = 1.

sλ(x1, x2) =

∣∣∣∣x4
1 x1

1

x4
2 x1

2

∣∣∣∣∣∣∣∣x1 x0
1

x2 x0
2

∣∣∣∣
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Example: Schur Polynomial

n = 2, λ = (3, 1)

λ1 = 3

λ2 = 1.

sλ(x1, x2) =

∣∣∣∣x4
1 x1

x4
2 x2

∣∣∣∣∣∣∣∣x1 1
x2 1

∣∣∣∣ =
x4
1 · x2 − x1 · x4

2

x1 − x2
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Example: Schur Polynomial

n = 2, λ = (3, 1)

λ1 = 3

λ2 = 1.

sλ(x1, x2) =

∣∣∣∣x4
1 x1

x4
2 x2

∣∣∣∣∣∣∣∣x1 x0
1

x2 x0
2

∣∣∣∣ =
x4
1 · x2 − x1 · x4

2

x1 − x2
=

(x1 − x2)(x3
1x2 + x2

1x2
2 + x1x3

2 )

x1 − x2
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Example: Schur Polynomial

n = 2, λ = (3, 1)

λ1 = 3

λ2 = 1.

sλ(x1, x2) = x3
1x2 + x2

1x2
2 + x1x3

2
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Schur Polynomial- Using Young tableaux

There is another way to compute sλ(x̄) using puzzles!
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Young Diagram (shape)

For a partition λ = (λ1 ≥, ... ≥ λn ≥ 0) we can create a Young diagram:

λ = ← λ1
← λ2
← . . .
← . . .
← λn

The total number of boxes, |λ| =
∑n

i=1 λi , is called the weight of λ.

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 15 / 54



Young Diagram (shape)

For a partition λ = (λ1 ≥, ... ≥ λn ≥ 0) we can create a Young diagram:

λ = ← λ1
← λ2
← . . .
← . . .
← λn

The total number of boxes, |λ| =
∑n

i=1 λi , is called the weight of λ.

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 15 / 54



Examples: Young diagram

Example

λ = (3, 1)

λ =

Example

µ = (4, 3, 1, 1)

µ =
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Young tableau

λ = (λ1 ≥ ... ≥ λn ≥ 0) is a Young diagram

µ = (µ1, ..., µn) is some collection of n nonnegative integers, and

|λ| = |µ|.
A Young tableau with shape λ = (λ1, ..., λn) and content
µ = (µ1, ..., µn) is a filling of

λ =

with µ1 1’s, µ2 2’s, ..., µn n’s (referred to as flavors) such that flavors

weakly increase across rows and
strictly increase down columns.
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Example: Young tableau

Example

λ = (4, 3, 1, 1) and µ = (2, 3, 3, 1),

|λ| = 9, |µ| = 9.

Fill λ = with flavors 1, 1, 2, 2, 2, 3, 3, 3, 4 so that,

rows weakly increase and columns strictly increase.

Example
1 1 2 2
2 3 3
3
4

Non Example!
1 1 2 3
2 3 3
2
4
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Definition of Schur Polynomial

Let x̄ = (x1, x2, . . . , xn) be n variables.
A partition is a collection of integers λ = (λ1, λ2, . . . , λn) that are weakly
decreasing, λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Call |λ| =

∑n
i=1 λi the weight of λ.

Definition

For each partition λ, the Schur polynomial is defined as

sλ(~x) =

∣∣∣xn+λj−j
i

∣∣∣
1≤i ,j≤n∣∣∣xn−j

i

∣∣∣
1≤i ,j≤n

(1)
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Definition of Schur Polynomial

sλ(~x) =

∣∣∣∣∣∣∣∣∣
xn+λ1−1
1 xn+λ2−2

1 xn+λ3−3
1 . . . xn+λn−n

1

xn+λ1−1
2 xn+λ2−2

2 xn+λ3−3
2 . . . xn+λn−n

2
...

...
...

. . .
...

xn+λ1−1
n xn+λ2−2

n xn+λ3−3
n . . . xn+λn−n

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn−1
1 xn−2

1 xn−3
1 . . . xn−n

1

xn−1
2 xn−2

2 xn−3
2 . . . xn−n

2
...

...
...

. . .
...

xn−1
n xn−2

n xn−3
n . . . xn−n

n

∣∣∣∣∣∣∣∣∣
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Schur polynomials- Using Young tableaux

There is another way to compute using Young tableaux.
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Schur polynomials-Using Young tableaux

x̄ = (x1, ..., xn) collection of n variables.

λ = (λ1, ..., λr ).

sλ(x̄) =
∑

Kλ,µx̄µ

where

µ = (µ1, ..., µn) is any collection of n integers with
|µ| = µ1 + ....+ µn = |λ|.
Kλ,µ is the number of Young tableaux with shape λ and content µ.

x̄µ is the monomial xµ11 xµ22 . . . xµnn .
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Example: Schur Polynomial

Let’s compute sλ(x1, x2), with λ = (3, 1) using Young tableaux!

Example

λ = (3, 1)

x̄ = (x1, x2)

sλ(x̄) =
∑

Kλ,µx̄µ

where

µ = (µ1, µ2) is a collection of 2 integers with |µ| = µ1 +µ2 = |λ| = 4.

Kλ,µ is the number of Young tableaux with shape λ = and

content µ.
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Example: Schur Polynomial

λ = (3, 1),

sλ(x1, x2) =
∑

Kλ,µx̄µ

a) What are all possible µ = (µ1, µ2) such that µ1 + µ2 = 4?

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).
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Example: Schur Polynomial

sλ(x1, x2) =
∑

Kλ,µx̄µ

b) For each, µ = (µ1, µ2), how many Young tableaux are there with
shape λ = (3, 1) and content µ?

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).
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b) For each, µ = (µ1, µ2), how many Young tableaux are there with
shape λ = (3, 1) and content µ?

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).

1 1 1
2

1 1 2
2

1 2 2
2
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Example: Schur Polynomial

sλ(x1, x2) =
∑

Kµx̄µ

b) For each, µ = (µ1, µ2), how many Young tableaux are there with
shape λ = (3, 1) and content µ?

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).

1 1 1
2

1 1 2
2

1 2 2
2

K(4,0) = 0,K(3,1) = 1,K(2,2) = 1,K(3,1) = 1,K(0,4) = 0
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Example: Schur Polynomial

sλ(x1, x2) =
∑

Kµx̄µ

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).

K(4,0) = 0,K(3,1) = 1,K(2,2) = 1,K(3,1) = 1,K(0,4) = 0

x̄µ = xµ1

1 xµ2

2

sλ(x1, x2) = K(4,0)x
4
1 + K(3,1)x

3
1 x2 + K(2,2)x

2
1 x2

2 + K(1,3)x1x3
2 + K(0,4)x

4
2

sλ(x1, x2) = x3
1 x2 + x2

1 x2
2 + x1x3

2

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 29 / 54



Example: Schur Polynomial

sλ(x1, x2) =
∑

Kµx̄µ

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).

K(4,0) = 0,K(3,1) = 1,K(2,2) = 1,K(3,1) = 1,K(0,4) = 0

x̄µ = xµ1

1 xµ2

2

sλ(x1, x2) = K(4,0)x
4
1 + K(3,1)x

3
1 x2 + K(2,2)x

2
1 x2

2 + K(1,3)x1x3
2 + K(0,4)x

4
2

sλ(x1, x2) = x3
1 x2 + x2

1 x2
2 + x1x3

2

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 29 / 54



Example: Schur Polynomial

sλ(x1, x2) =
∑

Kµx̄µ

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).

K(4,0) = 0,K(3,1) = 1,K(2,2) = 1,K(3,1) = 1,K(0,4) = 0

x̄µ = xµ1

1 xµ2

2

sλ(x1, x2) = K(4,0)x
4
1 + K(3,1)x

3
1 x2 + K(2,2)x

2
1 x2

2 + K(1,3)x1x3
2 + K(0,4)x

4
2

sλ(x1, x2) = x3
1 x2 + x2

1 x2
2 + x1x3

2

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 29 / 54



Example: Schur Polynomial

sλ(x1, x2) =
∑

Kµx̄µ

µ = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4).

K(4,0) = 0,K(3,1) = 1,K(2,2) = 1,K(3,1) = 1,K(0,4) = 0

x̄µ = xµ1

1 xµ2

2

sλ(x1, x2) = K(4,0)x
4
1 + K(3,1)x

3
1 x2 + K(2,2)x

2
1 x2

2 + K(1,3)x1x3
2 + K(0,4)x

4
2

sλ(x1, x2) = x3
1 x2 + x2

1 x2
2 + x1x3

2

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 29 / 54



Compare with determinant definition?

Computing
sλ(x1, x2)

.

Using Young tableaux:

sλ(x1, x2) = x3
1x2 + x2

1x2
2 + x1x3

2

Using determinants:

sλ(x1, x2) =

∣∣∣∣x4
1 x1

x4
2 x2

∣∣∣∣∣∣∣∣x1 x1
x2 x2

∣∣∣∣ =
x4
1 · x2 − x1 · x4

2

x1 − x2
=
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Compare with determinant definition?

Computing
sλ(x1, x2)

.

Using Young tableaux:

sλ(x1, x2) = x3
1x2 + x2

1x2
2 + x1x3

2

Using determinants:

=
(x1 − x2)(x3

1x2 + x2
1x2

2 + x1x3
2 )

x1 − x2
= x3

1x2 + x2
1x2

2 + x1x3
2

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 31 / 54



Compare with determinant definition?

Computing
sλ(x1, x2)

.

Using Young tableaux:

sλ(x1, x2) = x3
1x2 + x2

1x2
2 + x1x3

2

Using determinants:

sλ(x1, x2) = x3
1x2 + x2

1x2
2 + x1x3

2
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Multiplying Schur Polynomials

Question

Is sλ(x̄) · sµ(x̄) still a symmetric function?

Yes! It is a sum of Schur polynomials with non-negative coefficients.
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Multiplying Schur Polynomials

We can write the product as:

sµ(x̄)sν(x̄) =
∑
λ

cλµνsλ(x̄). (2)

where the summation is over all partitions λ = (λ1, ..., λn) with
|λ| = |µ|+ |ν|.
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LR-Coefficient

The coefficient cλµν is called a Littlewood-Richardson coefficient (1934).

How do we compute cλµν??
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Computing LR-Coefficients

cλµν is the number of Young tableaux with shape λ/µ and content ν with
the condition that

when reading the flavors in Young tableau from right to left across
rows and top to bottom down columns, at any stage,
#1′s ≥ #2′s ≥ · · · ≥ #n′s

we will call such a filling a reverse lattice word.
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Example of computing LR-coefficient

For λ = (4, 3, 1), µ = (3, 2, 0), ν = (2, 1, 0), let’s compute cλµ,ν .

Young diagram shape λ/µ

λ =
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Example of computing LR-coefficient

For λ = (4, 3, 1), µ = (3, 2, 0), ν = (2, 1, 0), let’s compute cλµ,ν .

Fill this shape with 1, 1, 2 so that filling is a reverse lattice word (at any
stage while reading off word, we have #1 ≥ #2 ).

λ/µ =
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Example of computing LR-coefficient

For λ = (4, 3, 1), µ = (3, 2, 0), ν = (2, 1, 0), let’s compute cλµ,ν .

Fill this shape with 1, 1, 2 so that filling is a reverse lattice word (at any
stage while reading off word, we have #1 ≥ #2 ).

1
1

2
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Example of computing LR-coefficient

For λ = (4, 3, 1), µ = (3, 2, 0), ν = (2, 1, 0), let’s compute cλµ,ν .

Fill this shape with 1, 1, 2 so that filling is a reverse lattice word (at any
stage while reading off word, we have #1 ≥ #2 ).

1
1

2

1
2

1
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Example of computing LR-coefficient

For λ = (4, 3, 1), µ = (3, 2, 0), ν = (2, 1, 0), let’s compute cλµ,ν .

Fill this shape with 1, 1, 2 so that filling is a reverse lattice word (at any
stage while reading off word, we have #1 ≥ #2 ).

1
1

2

1
2

1

c
(4,3,1)
(3,2,0),(2,1,0) = 2.
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Challenge: Computing LR-coefficient

For λ = (6, 5, 3, 1), µ = (4, 2, 0, 0), ν = (4, 3, 2, 0), let’s compute cλµ,ν .

cλµν is the number of Young tableaux with shape λ/µ and content ν with
the condition that

when reading the flavors in Young tableau from right to left across
rows and top to bottom down columns, at any stage,
#1′s ≥ #2′s ≥ #3′s ≥ #4′s

λ/µ =

Fill with 1, 1, 1, 1, 2, 2, 2, 3, 3 so that the filling is a reverse lattice word.
How many are there?
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Challenge Solutions

1 1
1 1 2

2 2 3
3

1 1
1 2 2

1 2 3
3

1 1
1 2 2

1 3 3
2

cλµν = 3
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Challenge: Non-Solutions

1 1
1 2 2

1 3 2
3

1 1
1 1 2

2 3 3
2

1 1
1 1 3

2 2 2
3
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Challenge: Non-Solutions

1 1
1 2 2

1 3 2
3

1 1
1 1 2

2 3 3
2

1 1
1 1 3

2 2 2
3
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Open questions about LR-coefficients

In my research:

Vector bundles of conformal blocks over the moduli space of rational,
genus zero curves with n marked points

V(sl2, λ, `)→ M0,n.

cνλ,µ are related to dimensions of V(sl2, λ, `).

Question

When is dim(V(sl2, λ, `)) = 1?
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Littlewood-Richardson and Vector Bundles of Conformal
Blocks 1

Let k and p be integers such that |λ| =
∑n

i=1 λi = 2(k`+ p), then

rank(V(sl2, λ, `)) = #

{
YT with shape ρ = (`2k , p2) and content (λ1, ..., λn)

}
.

The shape ρ = (`2k , p2) is

ρ =

`︷ ︸︸ ︷
. . .
. . .
. . .
. . .

0[Hob., ’15]
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Example: Computing ranks

Consider V = V(sl2, (7, 7, 6, 5, 5, 4, 4), 7).

|~λ| = 7 + 7 + 6 + 5 + 5 + 4 + 4 = 38 = 2(2(7) + 5)

k = 2, p = 5

rank(V) = #
{

YT on and content (7, 7, 6, 5, 5, 4, 4)
}
.
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Example: Computing ranks

Must compute the number of Young tableaux with shape

and content (7, 7, 6, 5, 5, 4, 4).

Fill the above boxes with the flavors
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7.
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Example of computing rank

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 4
4 4 4 4 5 5 5
5 5 6 6 6
6 7 7 7 7

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 4
4 4 4 4 5 5 6
5 5 5 6 6
6 7 7 7 7

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 4
4 4 4 4 5 6 6
5 5 5 5 6
6 7 7 7 7

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 5
4 4 4 4 4 6 6
5 5 5 5 6
6 7 7 7 7

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 5
4 4 4 4 4 5 6
5 5 5 6 6
6 7 7 7 7
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Classification of V(sl2) ranks

Theorem

Let V = V(sl2, (λ1, ..., λn), `) with λ1 ≥ λ2 ≥ ... ≥ λn,∑n
i=1 λi = 2(k`+ p), and for some p, k such that 0 ≤ p < ` and k ≥ 0.

Denote Λ =
∑n

i=2k+2 ci . Then

dim(V) = 0 iff Λ < p;

dim(V) = 1 iff Λ = p;

dim(V) > 1 iff Λ > p.
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For more details:

Quantum Kostka and the rank one problem for sl2m
Hobson, N., arXiv preprint arXiv:1508.06952, 2015.

Puzzles Littlewood-Richardson coefficients and Horn inequalities,
Azenhas, O., CMUC, University of Coimbra, 2009.

The hive model and the polynomial nature of stretched
Littlewood-Richardson coefficients, King, R., J. Combin. Theory,
2009.
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Thank you!

Want to learn more?
Email: nhobson@math.uga.edu

Website: search “Natalie Hobson Homepage”

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 54 / 54



Thank you!

Want to learn more?
Email: nhobson@math.uga.edu

Website: search “Natalie Hobson Homepage”

Natalie Hobson (Portland State University Math Club) Puzzles to solve problems November 25, 2015 54 / 54


