Solving problems with puzzles

Portland State University Math Club
November 25th, 2015

Young Diagram: $\lambda=(3,1)$:

Young Tableau:

Begin with:

- $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0\right)$ a Young diagram,
- $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ a collection of n nonnegative integers such that,
- $|\lambda|=|\mu|$.

A Young tableau with shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and content $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is a filling of λ with μ_{1} 1's, μ_{2} 2's, \ldots, μ_{n} n's (referred to as flavors) such that flavors

- weakly increase across rows (left to right) and
- strictly increase down columns (top to bottom).

Example:

1	1	2	3
2	2	3	
3			
4			

Non-Example:

1	1	2	3
2	3	3	
2			
4			

Littlewood-Richardson Coefficients:

The Littlewood-Richardson Coefficient, $c_{\mu \nu}^{\lambda}$, is the number of Young tableaux with shape λ / μ and content ν with the condition that

- when reading the flavors in Young tableau from right to left across rows and top to bottom down columns, at any stage, $\# 1^{\prime} s \geq \# 2^{\prime} s \geq \cdots \geq \# n^{\prime} s$
- we will call such a filling a reverse lattice word.

Example:

For $\lambda=(4,3,1), \mu=(3,2,0), \nu=(2,1,0)$, let's compute $c_{\mu, \nu}^{\lambda}$.
First delete the shape $\mu=(3,2,0)=\square$ from the shape $\lambda=(4,3,1)=\square \square$ get the shape λ / μ Fill this shape with the numbers $1,1,2$ so that filling is a reverse lattice word (at any stage while listing this word from right to left and top to bottom we have $\# 1 \geq \# 2)$. Fill in the following two shapes with the slide examples.

Activities

Exercise 1. Let $\lambda=(3,1)$ and $\bar{x}=\left(x_{1}, x_{2}\right)$.
Compute the Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}\right)$ using Young tableaux.
To do this, compute the sum:

$$
s_{(3,1)}\left(x_{1}, x_{2}\right)=\sum K_{(3,1), \mu} \bar{x}^{\mu}
$$

where

- $\mu=\left(\mu_{1}, \mu_{2}\right)$ is any collection of two nonnegative integers with $|\mu|=\mu_{1}+\mu_{2}=4$.
- $K_{(3,1), \mu}$ is the number of Young tableau with shape $\lambda=\square \square \square$ and content μ.
- \bar{x}^{μ} is the monomial equal to $\bar{x}^{\left(\mu_{1}, \mu_{2}\right)}=x_{1}^{\mu_{1}} x_{2}^{\mu_{2}}$

To compute this sum, follow the steps below.
a. What are all possible pairs of nonnegative integers $\mu=\left(\mu_{1}, \mu_{2}\right)$ such that $|\mu|=$ $\mu_{1}+\mu_{2}=4$?
b. For each $\mu=\left(\mu_{1}, \mu_{2}\right)$ from part (a), how many Young tableaux are there with shape $\lambda=(3,1)$ and content μ ? Use the following outlines to help you construct the Young tableaux. In doing this, you are computing $K_{(3,1), \mu}$ (number of Young tableau with shape $\lambda=(3,1)$ and content $\mu)$.

Exercise 2. Compute $c_{\mu, \nu}^{\lambda}$ with $\lambda=(6,5,3,1), \mu=(4,2,0,0), \nu=(4,3,2,0)$. Use the given shape λ to help you.

Recall: $c_{\mu \nu}^{\lambda}$ is the number of Young tableaux with shape λ / μ and content ν with the condition that when reading the flavors in Young tableau from right to left across rows and top to bottom down columns, at any stage, $\# 1^{\prime} s \geq \# 2^{\prime} s \geq \# 3^{\prime} s \geq \# 4^{\prime} s$

How many can you find?
$c_{\mu, \nu}^{\lambda}=$

REFERENCES

[1] O. Azenhas, Puzzles Littlewood-Richardson coefficients and Horn inequalities, CMUC, University of Coimbra (2009). \leftarrow
[2] Natalie Hobson, Quantum Kostka and the rank one problem for $\mathfrak{s l}_{2 m}$, arXiv preprint arXiv:1508.06952 (2015). \leftarrow
[3] A. Horn, Pacific J. Math 12 (1962), 225-241. \leftarrow
[4] A. Knutson and T. Tao, The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products I: Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090.
[5] A. Knutson, T. Tao, and C. Woodward, The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products II: Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48. \leftarrow
[6] R. King, The hive model and the polynomial nature of stretched Littlewood-Richardson coefficients, J. Combin. Theory, Series A 116 (2009), 314, 333. \leftarrow

