Solving problems with puzzles

Portland State University Math Club November 25th, 2015

Young Diagram:
$$\lambda = (3,1): \quad \lambda =$$

Young Tableau:

Begin with:

- $\lambda = (\lambda_1 \ge \dots \ge \lambda_n \ge 0)$ a Young diagram,
- $\mu = (\mu_1, ..., \mu_n)$ a collection of *n* nonnegative integers such that,
- $|\lambda| = |\mu|$.

A Young tableau with shape $\lambda = (\lambda_1, ..., \lambda_n)$ and content $\mu = (\mu_1, ..., \mu_n)$ is a filling of λ with μ_1 1's, μ_2 2's, ..., μ_n n's (referred to as *flavors*) such that flavors

- weakly increase across rows (left to right) and
- strictly increase down columns (top to bottom).

Example:						
1	1	2	3			
2	2	3				
3						
4						

Non-Example:						
1	1	2	3			
2	3	3				
2						
4						

Littlewood-Richardson Coefficients:

The Littlewood-Richardson Coefficient, $c_{\mu\nu}^{\lambda}$, is the number of Young tableaux with shape λ/μ and content ν with the condition that

- when reading the flavors in Young tableau from right to left across rows and top to bottom down columns, at any stage, $\#1's \ge \#2's \ge \cdots \ge \#n's$
- we will call such a filling a *reverse lattice word*.

Example:

For $\lambda = (4, 3, 1), \mu = (3, 2, 0), \nu = (2, 1, 0)$, let's compute $c_{\mu,\nu}^{\lambda}$.

First delete the shape $\mu = (3, 2, 0) =$ from the shape $\lambda = (4, 3, 1) =$ to

get the shape λ/μ Fill this shape with the numbers 1, 1, 2 so that filling is a *reverse lattice* word (at any stage while listing this word from right to left and top to bottom we have $\#1 \ge \#2$). Fill in the following two shapes with the slide examples.

ACTIVITIES

Exercise 1. Let $\lambda = (3, 1)$ and $\overline{x} = (x_1, x_2)$.

Compute the Schur polynomial $s_{\lambda}(x_1, x_2)$ using Young tableaux.

To do this, compute the sum:

$$s_{(3,1)}(x_1, x_2) = \sum K_{(3,1),\mu} \bar{x}^{\mu}$$

where

- $\mu = (\mu_1, \mu_2)$ is any collection of two nonnegative integers with $|\mu| = \mu_1 + \mu_2 = 4$.
- $K_{(3,1),\mu}$ is the number of Young tableau with shape $\lambda = \square$ and content μ .
- \bar{x}^{μ} is the monomial equal to $\bar{x}^{(\mu_1,\mu_2)} = x_1^{\mu_1} x_2^{\mu_2}$

To compute this sum, follow the steps below.

a. What are all possible pairs of nonnegative integers $\mu = (\mu_1, \mu_2)$ such that $|\mu| = \mu_1 + \mu_2 = 4$?

b. For each $\mu = (\mu_1, \mu_2)$ from part (a), how many Young tableaux are there with shape $\lambda = (3, 1)$ and content μ ? Use the following outlines to help you construct the Young tableaux. In doing this, you are computing $K_{(3,1),\mu}$ (number of Young tableau with shape $\lambda = (3, 1)$ and content μ).

Exercise 2. Compute $c_{\mu,\nu}^{\lambda}$ with $\lambda = (6, 5, 3, 1), \mu = (4, 2, 0, 0), \nu = (4, 3, 2, 0)$. Use the given shape λ to help you.

Recall: $c_{\mu\nu}^{\lambda}$ is the number of Young tableaux with shape λ/μ and content ν with the condition that when reading the flavors in Young tableau from right to left across rows and top to bottom down columns, at any stage, $\#1's \ge \#2's \ge \#3's \ge \#4's$

How many can you find?

 $c_{\mu,\nu}^{\lambda} =$

REFERENCES

- O. AZENHAS, Puzzles Littlewood-Richardson coefficients and Horn inequalities, CMUC, University of Coimbra (2009). ←
- [2] NATALIE HOBSON, Quantum Kostka and the rank one problem for \mathfrak{sl}_{2m} , arXiv preprint arXiv:1508.06952 (2015). \leftarrow
- [3] A. HORN, Pacific J. Math **12** (1962), 225-241. \leftarrow
- [4] A. KNUTSON AND T. TAO, The honeycomb model of $GL_n(\mathbb{C})$ tensor products I: Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090. \leftarrow
- [5] A. KNUTSON, T. TAO, AND C. WOODWARD, The honeycomb model of $GL_n(\mathbb{C})$ tensor products II: Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48. \leftarrow
- [6] R. KING, The hive model and the polynomial nature of stretched Littlewood-Richardson coefficients, J. Combin. Theory, Series A 116 (2009), 314, 333. ←