q-analogs of factorials and Fubini numbers

Andy Wilson
Portland State University

January 13, 2020

Categorification

q-analogs
Andy Wilson
q-analogs
Permutation
statistics
■ More structure = good!

Categorification

q-analogs
Andy Wilson

■ More structure = good!

- For example,

$$
\mathbb{Z} \text { as a set }
$$

Categorification

q-analogs
Andy Wilson

- More structure = good!
- For example,

$$
\mathbb{Z} \text { as a set } \rightarrow(\mathbb{Z},+) \text { as a group }
$$

Categorification

q-analogs
Andy Wilson

- More structure = good!

■ For example,

$$
\mathbb{Z} \text { as a set } \rightarrow(\mathbb{Z},+) \text { as a group } \rightarrow(\mathbb{Z},+, \cdot) \text { as a ring. }
$$

Categorification

■ More structure = good!
■ For example,

$$
\mathbb{Z} \text { as a set } \rightarrow(\mathbb{Z},+) \text { as a group } \rightarrow(\mathbb{Z},+, \cdot) \text { as a ring. }
$$

■ This process is sometimes called "categorification."

q-analogs

- A q-analog is a "categorified number:"

$$
\mathbb{N} \longrightarrow \mathbb{N}[q]
$$

q-analogs

Andy Wilson

- A q-analog is a "categorified number:"

$$
\mathbb{N} \longrightarrow \mathbb{N}[q]
$$

Definition

A q-analog of $N \in \mathbb{N}$ is a polynomial $f(q) \in \mathbb{N}[q]$ such that
$1 f(1)=N$, and
$2 f(q)$ carries some "extra information."

q-analogs

- A q-analog is a "categorified number:"

$$
\mathbb{N} \longrightarrow \mathbb{N}[q]
$$

Definition

A q-analog of $N \in \mathbb{N}$ is a polynomial $f(q) \in \mathbb{N}[q]$ such that
$1 f(1)=N$, and
2 $f(q)$ carries some "extra information."

■ We'll see many of examples of what (2) can mean.

An example q-analog: $[n]_{q}$!

q-analogs

Andy Wilson
q-analogs
Permutation statistics

Ordered set partitions

Definition

The classical q-analog of $n!=n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1$ is

$$
[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}
$$

where

$$
[k]_{q}=1+q+\ldots+q^{k-1}=\frac{q^{k}-1}{q-1}
$$

An example q-analog: $[n]_{q}$!

q-analogs

Andy Wilson
q-analogs
Permutation statistics

Ordered set partitions

Definition

The classical q-analog of $n!=n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1$ is

$$
[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}
$$

where

$$
[k]_{q}=1+q+\ldots+q^{k-1}=\frac{q^{k}-1}{q-1}
$$

■ For example,

$$
[3]_{q}=\left(1+q+q^{2}\right)(1+q)(1)=1+2 q+2 q^{2}+q^{3}
$$

An example q-analog: $[n]_{q}$!

q-analogs

Andy Wilson
q-analogs
Permutation statistics

Definition

The classical q-analog of $n!=n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1$ is

$$
[n]_{q}!=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}
$$

where

$$
[k]_{q}=1+q+\ldots+q^{k-1}=\frac{q^{k}-1}{q-1}
$$

■ For example,

$$
[3]_{q}=\left(1+q+q^{2}\right)(1+q)(1)=1+2 q+2 q^{2}+q^{3}
$$

■ Clearly $q \rightarrow 1$ recovers $n!$, so (1) is satisfied.

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

q-analogs
Andy Wilson
q-analogs
Permutation statistics

Bases for \mathbb{F}_{q}^{n}
Harmonics
Ordered set partitions

It encodes information about. . .

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

It encodes information about. . .

- distributions of statistics over permutations,

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

It encodes information about. . .

- distributions of statistics over permutations,
- bases for \mathbb{F}_{q}^{n},

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

It encodes information about. . .

- distributions of statistics over permutations,
- bases for \mathbb{F}_{q}^{n},

■ the space of harmonics of $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, among other things.

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

It encodes information about. . .

- distributions of statistics over permutations,

■ bases for \mathbb{F}_{q}^{n},
■ the space of harmonics of $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, among other things.

Permutation statistics

Definition

The symmetric group of n symbols is

$$
\mathfrak{S}_{n}=\{\text { bijections } \sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}\}
$$

and elements $\sigma \in \mathfrak{S}_{n}$ are permutations.

Permutation statistics

Andy Wilson
q-analogs
Permutation statistics

Definition

The symmetric group of n symbols is

$$
\mathfrak{S}_{n}=\{\text { bijections } \sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}\}
$$

and elements $\sigma \in \mathfrak{S}_{n}$ are permutations.
$■\left|\mathfrak{S}_{n}\right|=n!$

Permutation statistics

Definition

The symmetric group of n symbols is

$$
\mathfrak{S}_{n}=\{\text { bijections } \sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}\}
$$

and elements $\sigma \in \mathfrak{S}_{n}$ are permutations.

■ $\left|\mathfrak{S}_{n}\right|=n!$
■ Often written in one-line notation.
■ E.g. $\sigma=52413$ means $\sigma(1)=5, \sigma(2)=2, \sigma(3)=4, \ldots$.

Permutation statistics

q-analogs
Andy Wilson
q-analogs
Permutation statistics

- A permutation statistic is an assignment of a number to every permutation $\sigma \in \mathfrak{S}_{n}$.

Permutation statistics

q-analogs
Andy Wilson
q-analogs
Permutation statistics

- A permutation statistic is an assignment of a number to every permutation $\sigma \in \mathfrak{S}_{n}$.
■ Often valuable to know the distribution of a statistic
- i.e. how many σ get assigned the number k.

Permutation statistics

q-analogs
Andy Wilson
q-analogs
Permutation statistics

Bases for \mathbb{F}_{q}^{n}

- A permutation statistic is an assignment of a number to every permutation $\sigma \in \mathfrak{S}_{n}$.
■ Often valuable to know the distribution of a statistic
- i.e. how many σ get assigned the number k.

Age Distribution, 2000

Inversion number

Andy Wilson

$$
\operatorname{inv}(\sigma)=\#\{(i, j): 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\} .
$$

Inversion number

Andy Wilson
q-analogs
Permutation statistics

Definition

For $\sigma \in \mathfrak{S}_{n}$, the inversion number of σ is

$$
\operatorname{inv}(\sigma)=\#\{(i, j): 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}
$$

- For example, $\operatorname{inv}(526413)=9$.

Inversion number

Definition

For $\sigma \in \mathfrak{S}_{n}$, the inversion number of σ is

$$
\operatorname{inv}(\sigma)=\#\{(i, j): 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}
$$

- For example, $\operatorname{inv}(526413)=9$.

■ $\operatorname{inv}(\sigma)$ also gives the number of adjacent transpositions required to sort σ to the identity permutation.

Inversion number

Definition

For $\sigma \in \mathfrak{S}_{n}$, the inversion number of σ is

$$
\operatorname{inv}(\sigma)=\#\{(i, j): 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}
$$

- For example, $\operatorname{inv}(526413)=9$.

■ $\operatorname{inv}(\sigma)$ also gives the number of adjacent transpositions required to sort σ to the identity permutation.
■ How many $\sigma \in \mathfrak{S}_{n}$ have $\operatorname{inv}(\sigma)=k$ for fixed k ?

The distribution of inv on \mathfrak{S}_{n}

q-analogs

Andy Wilson
q-analogs
Permutation statistics

Bases for \mathbb{F}_{q}^{n}
Harmonics
Ordered set partitions

Theorem

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}=[n]_{q}!
$$

The distribution of inv on \mathfrak{S}_{n}

q-analogs
Andy Wilson
q-analogs
Permutation statistics

■ Check for $n=3$:

$$
\begin{aligned}
& \quad \begin{array}{lll}
\operatorname{inv}(123)=0 & \operatorname{inv}(213)=1 & \operatorname{inv}(312)=2 \\
\operatorname{inv}(132)=1 & \operatorname{inv}(231)=2 & \operatorname{inv}(321)=3
\end{array} \\
& \text { and }[3]_{q}!=1+2 q+2 q^{2}+q^{3} .
\end{aligned}
$$

The distribution of inv on \mathfrak{S}_{n}

q-analogs
Andy Wilson
q-analogs
Permutation statistics

Theorem

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv(}(\sigma)}=[n]_{q}!
$$

- Check for $n=3$:

$$
\begin{array}{lll}
\operatorname{inv}(123)=0 & \operatorname{inv}(213)=1 & \operatorname{inv}(312)=2 \\
\operatorname{inv}(132)=1 & \operatorname{inv}(231)=2 & \operatorname{inv}(321)=3
\end{array}
$$

$$
\text { and }[3]_{q}!=1+2 q+2 q^{2}+q^{3} .
$$

■ Can be proved by induction on n :

The distribution of inv on \mathfrak{S}_{n}

q-analogs
Andy Wilson
q-analogs
Permutation statistics

Theorem

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}=[n]_{q}!
$$

- Check for $n=3$:

$$
\begin{array}{lll}
\operatorname{inv}(123)=0 & \operatorname{inv}(213)=1 & \operatorname{inv}(312)=2 \\
\operatorname{inv}(132)=1 & \operatorname{inv}(231)=2 & \operatorname{inv}(321)=3
\end{array}
$$

and $[3]_{q}!=1+2 q+2 q^{2}+q^{3}$.

- Can be proved by induction on n :

$$
8 \mapsto 5231476
$$

Another permutation statistic

Definition [Mac15]

The major index of $\sigma \in S_{n}$ is

$$
\operatorname{maj}(\sigma)=\sum_{i: \sigma(i)>\sigma(i+1)} i .
$$

Another permutation statistic

Andy Wilson

Definition [Mac15]

The major index of $\sigma \in S_{n}$ is

$$
\operatorname{maj}(\sigma)=\sum_{i: \sigma(i)>\sigma(i+1)} i
$$

■ For example, $\operatorname{maj}(526413)=1+3+4=8$.

Another permutation statistic

Definition [Mac15]

The major index of $\sigma \in S_{n}$ is

$$
\operatorname{maj}(\sigma)=\sum_{i: \sigma(i)>\sigma(i+1)} i
$$

■ For example, $\operatorname{maj}(526413)=1+3+4=8$.

- Major index depends only on the descent set of σ.

MacMahon's Theorem

Permutation statistics

Theorem [Mac15]

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=[n]_{q}!=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}
$$

MacMahon's Theorem

Andy Wilson

q-analogs

Permutation statistics

Theorem [Mac15]

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=[n]_{q}!=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}
$$

- Bijective proofs by Foata [Foa68], Carlitz [Car75].

MacMahon's Theorem

q-analogs
Andy Wilson

q-analogs

Permutation statistics

Theorem [Mac15]

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=[n]_{q}!=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}
$$

- Bijective proofs by Foata [Foa68], Carlitz [Car75].
- Exactly one place to insert an n that increases maj by k.

MacMahon's Theorem

Theorem [Mac15]

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=[n]_{q}!=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}
$$

- Bijective proofs by Foata [Foa68], Carlitz [Car75].
- Exactly one place to insert an n that increases maj by k.

■ Many other permutation statistics share this distribution.

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

It encodes information about. . .

- distributions of statistics over permutations,
- bases for \mathbb{F}_{q}^{n},

■ the space of harmonics of $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, among other things.

■ For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.

■ For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.

- How many bases does \mathbb{F}_{q}^{n} have?

■ For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.

- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.
- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$

- For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.
- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- 4 lines through the origin

- For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.
- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- 4 lines through the origin

- For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.
- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- 4 lines through the origin

- For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.
- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- 4 lines through the origin

■ For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.

- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- 4 lines through the origin

- For q a prime power, consider the vector space \mathbb{F}_{q}^{n}.
- How many bases does \mathbb{F}_{q}^{n} have?
- For $q=3, n=2 \ldots$
- 4 lines through the origin
- $\binom{4}{2}=6$ bases (from linearly independent lines through the origin)

Bases for \mathbb{F}_{q}^{n}

Theorem

The number of different bases for \mathbb{F}_{q}^{n} is

$$
\frac{q^{\binom{n}{2}}[n]_{q}!}{n!} .
$$

Bases for \mathbb{F}_{q}^{n}

Theorem

The number of different bases for \mathbb{F}_{q}^{n} is

$$
\frac{q^{\binom{n}{2}}[n]_{q}!}{n!} .
$$

■ We will count the number of ordered bases.

Bases for \mathbb{F}_{q}^{n}

Theorem

The number of different bases for \mathbb{F}_{q}^{n} is

$$
\frac{q^{\binom{n}{2}}[n]_{q}!}{n!} .
$$

■ We will count the number of ordered bases.

- Pick a line: $\frac{q^{n}-1}{q-1}$.

Bases for \mathbb{F}_{q}^{n}

Theorem

The number of different bases for \mathbb{F}_{q}^{n} is

$$
\frac{q^{\binom{n}{2}}[n]_{q}!}{n!} .
$$

■ We will count the number of ordered bases.
■ Pick a line: $\frac{q^{n}-1}{q-1}$.
■ Pick another (different) line: $\frac{q^{n}-q}{q-1}$.

Bases for \mathbb{F}_{q}^{n}

q-analogs
Andy Wilson

Theorem

The number of different bases for \mathbb{F}_{q}^{n} is

$$
\frac{q^{\binom{n}{2}}[n]_{q}!}{n!} .
$$

■ We will count the number of ordered bases.

- Pick a line: $\frac{q^{n}-1}{q-1}$.
- Pick another (different) line: $\frac{q^{n}-q}{q-1}$.
- Continuing this process, we get

$$
\frac{q^{n}-1}{q-1} \cdot \frac{q^{n}-q}{q-1} \cdot \ldots \cdot \frac{q^{n}-q^{n-1}}{q-1}=q^{\binom{n}{2}}[n]_{q}!.
$$

Bases for \mathbb{F}_{q}^{n}

Theorem

The number of different bases for \mathbb{F}_{q}^{n} is

$$
\frac{q^{\binom{n}{2}}[n]_{q}!}{n!} .
$$

■ We will count the number of ordered bases.
■ Pick a line: $\frac{q^{n}-1}{q-1}$.

- Pick another (different) line: $\frac{q^{n}-q}{q-1}$.

■ Continuing this process, we get

$$
\frac{q^{n}-1}{q-1} \cdot \frac{q^{n}-q}{q-1} \cdot \ldots \cdot \frac{q^{n}-q^{n-1}}{q-1}=q^{\binom{n}{2}}[n]_{q}!
$$

■ Divide by n ! to "unorder" the bases.

Why is $[n]_{q}$! the "correct" q-analog for $n!?$

It encodes information about. . .

- distributions of statistics over permutations,
- bases for \mathbb{F}_{q}^{n},

■ the space of harmonics of $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, among other things.

Vandermonde

q-analogs
Andy Wilson

We work in the multivariate polynomial ring $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Vandermonde

We work in the multivariate polynomial ring $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Definition

The Vandermonde matrix is the matrix

$$
M_{n}=\left[x_{i}^{j-1}\right]_{i, j=1}^{n}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1} .
\end{array}\right]
$$

Its determinant is the Vandermonde determinant, written δ_{n}.

Vandermonde

We work in the multivariate polynomial ring $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Definition

The Vandermonde matrix is the matrix

$$
M_{n}=\left[x_{i}^{j-1}\right]_{i, j=1}^{n}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1} .
\end{array}\right]
$$

Its determinant is the Vandermonde determinant, written δ_{n}.

- M_{n} appears in polynomial interpolation.

Vandermonde

We work in the multivariate polynomial ring $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Definition

The Vandermonde matrix is the matrix

$$
M_{n}=\left[x_{i}^{j-1}\right]_{i, j=1}^{n}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1} .
\end{array}\right]
$$

Its determinant is the Vandermonde determinant, written δ_{n}.

- M_{n} appears in polynomial interpolation.
- δ_{n} can also be written as

$$
\delta_{n}=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Harmonics

Definition

The (type A) harmonic space \mathbf{H}_{n} is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_{n}.

Harmonics

Definition

The (type A) harmonic space \mathbf{H}_{n} is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_{n}.

For example,

$$
\delta_{3}=\left|\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right|
$$

Harmonics

Definition

The (type A) harmonic space \mathbf{H}_{n} is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_{n}.

For example,

$$
\delta_{3}=\left|\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right|=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
$$

so this polynomial is in H_{3}.

Harmonics

Definition

The (type A) harmonic space \mathbf{H}_{n} is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_{n}.

For example,

$$
\delta_{3}=\left|\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right|=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
$$

so this polynomial is in \mathbf{H}_{3}. So is

$$
\partial_{x_{3}}\left(\delta_{3}\right)=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{2}\right)+\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) .
$$

Coinvariants

■ Why study the harmonic space?

```
q-analogs
Permutation statistics

\section*{Coinvariants}

■ Why study the harmonic space?
■ \(\mathfrak{S}_{n}\) acts on \(f \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) by permuting variables, e.g.
\[
213 \cdot\left(x_{1}^{2} x_{3}-x_{2}\right)=x_{2}^{2} x_{3}-x_{1}
\]

\section*{Coinvariants}
- Why study the harmonic space?

■ \(\mathfrak{S}_{n}\) acts on \(f \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) by permuting variables, e.g.
\[
213 \cdot\left(x_{1}^{2} x_{3}-x_{2}\right)=x_{2}^{2} x_{3}-x_{1} .
\]

■ \(f\) is symmetric if \(\sigma \cdot f=f\) for every \(\sigma \in \mathfrak{S}_{n}\).

\section*{Coinvariants}
- Why study the harmonic space?

■ \(\mathfrak{S}_{n}\) acts on \(f \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) by permuting variables, e.g.
\[
213 \cdot\left(x_{1}^{2} x_{3}-x_{2}\right)=x_{2}^{2} x_{3}-x_{1}
\]
\(\square f\) is symmetric if \(\sigma \cdot f=f\) for every \(\sigma \in \mathfrak{S}_{n}\).
■ \(\mathbf{H}_{n}\) is isomorphic (as a graded \(\mathfrak{S}_{n}\) module) to the coinvariant ring:
\[
\frac{\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\langle f \text { symmetric with no constant term }\rangle} .
\]

\section*{Coinvariants}
- Why study the harmonic space?

■ \(\mathfrak{S}_{n}\) acts on \(f \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) by permuting variables, e.g.
\[
213 \cdot\left(x_{1}^{2} x_{3}-x_{2}\right)=x_{2}^{2} x_{3}-x_{1}
\]
\(\square f\) is symmetric if \(\sigma \cdot f=f\) for every \(\sigma \in \mathfrak{S}_{n}\).
■ \(\mathbf{H}_{n}\) is isomorphic (as a graded \(\mathfrak{S}_{n}\) module) to the coinvariant ring:
\[
\frac{\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]}{\langle f \text { symmetric with no constant term }\rangle} .
\]

■ This "decomposes" \(\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) into a symmetric (invariant) piece and a coinvariant piece.

\section*{Grading by degree}

■ \(\mathbf{H}_{n}\) can be decomposed by degree into
\[
\mathbf{H}_{n}=\bigoplus_{d \geq 0} \mathbf{H}_{n}^{(d)}
\]

\section*{Grading by degree}

■ \(\mathbf{H}_{n}\) can be decomposed by degree into
\[
\mathbf{H}_{n}=\bigoplus_{d \geq 0} \mathbf{H}_{n}^{(d)}
\]

■ For example,
\[
\delta_{3} \in \mathbf{H}_{3}^{(3)} \quad \partial_{x_{3}}\left(\delta_{3}\right) \in \mathbf{H}_{3}^{(2)}
\]

\section*{Dimension and graded dimension}

Theorem [Art42]
\(\operatorname{dim}\left(\mathbf{H}_{n}\right)=n!\)

\section*{Dimension and graded dimension}

Andy Wilson

\section*{\(q\)-analogs}

Permutation statistics

\section*{Theorem [Art42]}
\[
\begin{aligned}
\operatorname{dim}\left(\mathbf{H}_{n}\right) & =n! \\
\sum_{d \geq 0} \operatorname{dim}\left(\mathbf{H}_{n}^{(d)}\right) q^{d} & =[n]_{q}!
\end{aligned}
\]

\section*{Bases for \(\mathbf{H}_{n}\)}

■ An example basis for \(\mathbf{H}_{3}\) :
\[
\begin{aligned}
\delta_{3} & \in \mathbf{H}_{3}^{(3)} \\
\partial_{x_{1}}\left(\delta_{3}\right), \partial_{x_{2}}\left(\delta_{3}\right) & \in \mathbf{H}_{3}^{(2)} \\
\partial_{x_{1}}^{2}\left(\delta_{3}\right), \partial_{x_{1}} \partial_{x_{2}}\left(\delta_{3}\right) & \in \mathbf{H}_{3}^{(1)} \\
\partial_{x_{1}}^{2} \partial_{x_{2}}\left(\delta_{3}\right) & \in \mathbf{H}_{3}^{(0)}
\end{aligned}
\]

\section*{Bases for \(\mathbf{H}_{n}\)}

■ An example basis for \(\mathbf{H}_{3}\) :
\[
\begin{aligned}
\delta_{3} & \in \mathbf{H}_{3}^{(3)} \\
\partial_{x_{1}}\left(\delta_{3}\right), \partial_{x_{2}}\left(\delta_{3}\right) & \in \mathbf{H}_{3}^{(2)} \\
\partial_{x_{1}}^{2}\left(\delta_{3}\right), \partial_{x_{1}} \partial_{x_{2}}\left(\delta_{3}\right) & \in \mathbf{H}_{3}^{(1)} \\
\partial_{x_{1}}^{2} \partial_{x_{2}}\left(\delta_{3}\right) & \in \mathbf{H}_{3}^{(0)}
\end{aligned}
\]
- Bases can be derived from permutation statistics.

\section*{What's new?}
```

q-analogs

```
Permutation
statistics
Bases for \(\mathbb{F}_{q}^{n}\)
- All of this work is pretty classical.

\section*{What's new?}
- All of this work is pretty classical.

■ What's happening currently?

\section*{What's new?}
- All of this work is pretty classical.

■ What's happening currently?
■ One branch is to generalize permutations to ordered set partitions.

\section*{Ordered set partitions}

\section*{Definition}

An ordered set partition \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\) is a \(k\)-tuple of sets
\[
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)=\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}
\]
such that
\[
\bigsqcup_{i=1}^{k} \pi_{i}=\{1,2, \ldots, n\}
\]

\section*{Ordered set partitions}
\(q\)-analogs
Andy Wilson
\(q\)-analogs
Permutation statistics Bases for \(\mathbb{F}_{q}^{n}\)
Harmonics
Ordered set partitions

\section*{Definition}

An ordered set partition \(\pi \in \mathcal{O P}_{n, k}\) is a \(k\)-tuple of sets
\[
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)=\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}
\]
such that
\[
\bigsqcup_{i=1}^{k} \pi_{i}=\{1,2, \ldots, n\} .
\]

■ For example, \(245|3| 16 \in \mathcal{O} \mathcal{P}_{6,3}\).

\section*{Ordered set partitions}
\(q\)-analogs
Andy Wilson
\(q\)-analogs
Permutation statistics

Bases for \(\mathbb{F}_{q}^{n}\)
Harmonics
Ordered set partitions

\section*{Definition}

An ordered set partition \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\) is a \(k\)-tuple of sets
\[
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)=\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}
\]
such that
\[
\bigsqcup_{i=1}^{k} \pi_{i}=\{1,2, \ldots, n\} .
\]

■ For example, \(245|3| 16 \in \mathcal{O} \mathcal{P}_{6,3}\).
■ Note that \(\mathcal{O} \mathcal{P}_{n, n}=\mathfrak{S}_{n}\).

\section*{Ordered set partitions}

\section*{Definition}

An ordered set partition \(\pi \in \mathcal{O P}_{n, k}\) is a \(k\)-tuple of sets
\[
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)=\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}
\]
such that
\[
\bigsqcup_{i=1}^{k} \pi_{i}=\{1,2, \ldots, n\} .
\]

■ For example, \(245|3| 16 \in \mathcal{O} \mathcal{P}_{6,3}\).
■ Note that \(\mathcal{O} \mathcal{P}_{n, n}=\mathfrak{S}_{n}\).
■ \(\mathcal{O} \mathcal{P}_{n, k}\) corresponds to surjections
\[
\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, k\}
\]

\section*{Counting ordered set partitions}

■ \(\left|\mathcal{O} \mathcal{P}_{n, k}\right|=k!S_{n, k}\), where \(S_{n, k}\) is the Stirling number of the second kind, defined recursively by
\[
S_{n, k}=k S_{n-1, k}+S_{n-1, k-1}
\]

\section*{Counting ordered set partitions}
\(q\)-analogs
Andy Wilson
\(q\)-analogs
Permutation statistics

Bases for \(\mathbb{F}_{q}^{n}\)
Harmonics
Ordered set partitions

■ \(\left|\mathcal{O} \mathcal{P}_{n, k}\right|=k!S_{n, k}\), where \(S_{n, k}\) is the Stirling number of the second kind, defined recursively by
\[
S_{n, k}=k S_{n-1, k}+S_{n-1, k-1}
\]

■ These are sometimes called Fubini numbers.

\section*{Counting ordered set partitions}
\(q\)-analogs
Andy Wilson
\(q\)-analogs
Permutation statistics Bases for \(\mathbb{F}_{q}^{n}\) Harmonics Ordered set partitions

■ \(\left|\mathcal{O} \mathcal{P}_{n, k}\right|=k!S_{n, k}\), where \(S_{n, k}\) is the Stirling number of the second kind, defined recursively by
\[
S_{n, k}=k S_{n-1, k}+S_{n-1, k-1}
\]

■ These are sometimes called Fubini numbers.
\begin{tabular}{cccccc}
1 & & & & & \\
1 & 2 & & & & \\
1 & 6 & 6 & & & \\
1 & 14 & 26 & 24 & & \\
\(\vdots\) & & & & \(\ddots\) & \\
1 & & & & & \(n!\)
\end{tabular}

\section*{A \(q\)-analog for Fubini numbers}
- A natural \(q\)-analog is \([k]_{q}!S_{n, k}(q)\), where
\[
S_{n, k}(q)=[k]_{q} S_{n-1, k}(q)+S_{n-1, k-1}(q) .
\]

\section*{A \(q\)-analog for Fubini numbers}
- A natural \(q\)-analog is \([k]_{q}!S_{n, k}(q)\), where
\[
S_{n, k}(q)=[k]_{q} S_{n-1, k}(q)+S_{n-1, k-1}(q) .
\]

■ For example,
\[
[3]_{q}!S_{4,3}(q)=q^{5}+4 q^{4}+9 q^{3}+11 q^{2}+8 q+3 .
\]

■ Recent work (by me and many others) has extended results from \([n]_{q}\) ! to \([k]_{q}!S_{n, k}(q)\), using. . .

\section*{A \(q\)-analog for Fubini numbers}

■ A natural \(q\)-analog is \([k]_{q}!S_{n, k}(q)\), where
\[
S_{n, k}(q)=[k]_{q} S_{n-1, k}(q)+S_{n-1, k-1}(q) .
\]

■ For example,
\[
[3]_{q}!S_{4,3}(q)=q^{5}+4 q^{4}+9 q^{3}+11 q^{2}+8 q+3 .
\]

■ Recent work (by me and many others) has extended results from \([n]_{q}!\) to \([k]_{q}!S_{n, k}(q)\), using. .

■ ordered set partition statistics,
- spanning sets for \(\mathbb{F}_{q}^{k}\), and
- superspace harmonics.

\section*{The statistic minimaj}

■ Given \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\), rearrange its blocks so that the resulting permutation has minimal major index.

\section*{The statistic minimaj}

■ Given \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\), rearrange its blocks so that the resulting permutation has minimal major index.
■ For example, 245|138|67 \(\rightarrow 245|813| 67\), which has maj 4.

\section*{The statistic minimaj}

■ Given \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\), rearrange its blocks so that the resulting permutation has minimal major index.
■ For example, 245|138|67 \(\rightarrow 245|813| 67\), which has maj 4.
■ Denote this number minimaj \((\pi)\).

\section*{The statistic minimaj}
- Given \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\), rearrange its blocks so that the resulting permutation has minimal major index.
■ For example, 245|138|67 \(\rightarrow 245|813| 67\), which has maj 4.
■ Denote this number minimaj \((\pi)\).

\section*{Theorem [HRW18, Rho18]}
\[
\sum_{\pi \in \mathcal{O} \mathcal{P}_{n, k}} q^{\operatorname{minimaj}(\pi)}=[k]_{q}!S_{n, k}(q)
\]

\section*{The statistic minimaj}
- Given \(\pi \in \mathcal{O} \mathcal{P}_{n, k}\), rearrange its blocks so that the resulting permutation has minimal major index.
■ For example, 245|138|67 \(\rightarrow 245|813| 67\), which has maj 4.
■ Denote this number minimaj \((\pi)\).

\section*{Theorem [HRW18, Rho18]}
\[
\sum_{\pi \in \mathcal{O} \mathcal{P}_{n, k}} q^{\operatorname{minimaj}(\pi)}=[k]_{q}!S_{n, k}(q)
\]

■ Several other equidistributed statistics are studied in [HRW18].

\section*{Spanning sets for \(\mathbb{F}_{q}^{k}\)}

\section*{Theorem}

When \(n \geq k\), the number of ordered spanning sets
\[
\left(v_{1}, v_{2}, \ldots, v_{n}\right)
\]
for \(\mathbb{F}_{q}^{k}\) ( \(q\) a prime power) is
\[
q^{\binom{k}{2}}[k]_{q}!S_{n, k}(q) .
\]

\section*{Spanning sets for \(\mathbb{F}_{q}^{k}\)}

\section*{Theorem}

When \(n \geq k\), the number of ordered spanning sets
\[
\left(v_{1}, v_{2}, \ldots, v_{n}\right)
\]
for \(\mathbb{F}_{q}^{k}\) ( \(q\) a prime power) is
\[
q^{\binom{k}{2}}[k]_{q}!S_{n, k}(q) .
\]

For example, if \(q=3, n=3, k=2\), we get

\[
4 \cdot 1 \cdot 3+4 \cdot 3 \cdot 4=60
\]

\section*{Superspace}

■ Let \(\Omega_{n}\) denote the space of "polynomials" in two types of variables:

■ \(x_{1}, x_{2}, \ldots, x_{n}\), which commute, and
■ \(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\), which anti-commute, so
\[
\theta_{i} \theta_{j}=-\theta_{j} \theta_{i} \Longrightarrow \theta_{i}^{2}=0
\]

\section*{Superspace}

Andy Wilson
\(q\)-analogs
Permutation statistics partitions

■ Let \(\Omega_{n}\) denote the space of "polynomials" in two types of variables:
- \(x_{1}, x_{2}, \ldots, x_{n}\), which commute, and
- \(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\), which anti-commute, so
\[
\theta_{i} \theta_{j}=-\theta_{j} \theta_{i} \Longrightarrow \theta_{i}^{2}=0
\]
- The two types of variables commute with one another.

\section*{Superspace}

■ Let \(\Omega_{n}\) denote the space of "polynomials" in two types of variables:

■ \(x_{1}, x_{2}, \ldots, x_{n}\), which commute, and
■ \(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\), which anti-commute, so
\[
\theta_{i} \theta_{j}=-\theta_{j} \theta_{i} \Longrightarrow \theta_{i}^{2}=0
\]
- The two types of variables commute with one another.

■ For example,
\[
x_{2}^{4} \theta_{1} \theta_{3}=\theta_{1} \theta_{3} x_{2}^{4}=-\theta_{3} \theta_{1} x_{2}^{4} \in \Omega_{3}
\]

\section*{Superspace}

■ Let \(\Omega_{n}\) denote the space of "polynomials" in two types of variables:

■ \(x_{1}, x_{2}, \ldots, x_{n}\), which commute, and
■ \(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\), which anti-commute, so
\[
\theta_{i} \theta_{j}=-\theta_{j} \theta_{i} \Longrightarrow \theta_{i}^{2}=0
\]
- The two types of variables commute with one another.

■ For example,
\[
x_{2}^{4} \theta_{1} \theta_{3}=\theta_{1} \theta_{3} x_{2}^{4}=-\theta_{3} \theta_{1} x_{2}^{4} \in \Omega_{3}
\]
- The objects in \(\Omega_{n}\) are called superpolynomials and appear in mathematical physics and differential algebra [DeW92].

\section*{The superspace Vandermonde}

Andy Wilson
\(q\)-analogs
Permutation statistics Bases for \(\mathbb{F}_{q}^{n}\) partitions

■ For positive integers \(n \geq k\), define the superspace Vandermonde matrix to be
\[
M_{n, k}=\left[\begin{array}{ccccccc}
1 & x_{1} & \ldots & x_{1}^{k-1} & \theta_{1} x_{1}^{k-1} & \ldots & \theta_{1} x_{1}^{k-1} \\
1 & x_{2} & \ldots & x_{2}^{k-1} & \theta_{2} x_{2}^{k-1} & \ldots & \theta_{2} x_{2}^{k-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{k-1} & \theta_{n} x_{n}^{k-1} & \ldots & \theta_{n} x_{n}^{k-1}
\end{array}\right]
\]

\section*{The superspace Vandermonde}

Andy Wilson
\(q\)-analogs
Permutation statistics Bases for \(\mathbb{F}_{q}^{n}\) partitions

■ For positive integers \(n \geq k\), define the superspace Vandermonde matrix to be
\[
M_{n, k}=\left[\begin{array}{ccccccc}
1 & x_{1} & \ldots & x_{1}^{k-1} & \theta_{1} x_{1}^{k-1} & \ldots & \theta_{1} x_{1}^{k-1} \\
1 & x_{2} & \ldots & x_{2}^{k-1} & \theta_{2} x_{2}^{k-1} & \ldots & \theta_{2} x_{2}^{k-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{k-1} & \theta_{n} x_{n}^{k-1} & \ldots & \theta_{n} x_{n}^{k-1}
\end{array}\right]
\]

■ Note that \(M_{n, n}=M_{n}\), the usual Vandermonde matrix.

\section*{The superspace Vandermonde}
- For positive integers \(n \geq k\), define the superspace Vandermonde matrix to be
\[
M_{n, k}=\left[\begin{array}{ccccccc}
1 & x_{1} & \ldots & x_{1}^{k-1} & \theta_{1} x_{1}^{k-1} & \ldots & \theta_{1} x_{1}^{k-1} \\
1 & x_{2} & \ldots & x_{2}^{k-1} & \theta_{2} x_{2}^{k-1} & \ldots & \theta_{2} x_{2}^{k-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{k-1} & \theta_{n} x_{n}^{k-1} & \ldots & \theta_{n} x_{n}^{k-1}
\end{array}\right]
\]

■ Note that \(M_{n, n}=M_{n}\), the usual Vandermonde matrix.
■ Define the superspace Vandermonde determinant to be
\[
\delta_{n, k}=\operatorname{det}\left(M_{n, k}\right)
\]
for an appropriate non-commutative determinant.

\section*{An example superspace Vandermonde}
\(q\)-analogs
Andy Wilson

\section*{\(q\)-analogs}

Permutation
statistics
Bases for \(\mathbb{F}_{q}^{n}\)
Harmonics
Ordered set partitions
\[
M_{3,2}=\left[\begin{array}{lll}
1 & x_{1} & \theta_{1} x_{1} \\
1 & x_{2} & \theta_{2} x_{2} \\
1 & x_{3} & \theta_{3} x_{3}
\end{array}\right]
\]

\section*{An example superspace Vandermonde}
\[
\begin{aligned}
M_{3,2} & =\left[\begin{array}{lll}
1 & x_{1} & \theta_{1} x_{1} \\
1 & x_{2} & \theta_{2} x_{2} \\
1 & x_{3} & \theta_{3} x_{3}
\end{array}\right] \\
\delta_{3,2} & =\operatorname{det}\left(M_{3,2}\right) \\
& =\theta_{3} x_{2} x_{3}-\theta_{2} x_{2} x_{3}-\theta_{3} x_{1} x_{3} \\
& +\theta_{1} x_{1} x_{3}+\theta_{2} x_{1} x_{2}-\theta_{1} x_{1} x_{2}
\end{aligned}
\]

\section*{Superspace harmonics}

■ Let \(\mathbf{H}_{n, k}\) be the vector space spanned by all partial derivatives of \(\delta_{n, k}\) in the \(x_{i}\) variables.

\section*{Superspace harmonics}

■ Let \(\mathbf{H}_{n, k}\) be the vector space spanned by all partial derivatives of \(\delta_{n, k}\) in the \(x_{i}\) variables.
- \(\mathbf{H}_{n, k}\) can be decomposed by \(x\) degree into
\[
\mathbf{H}_{n, k}=\bigoplus_{d \geq 0} \mathbf{H}_{n, k}^{(d)} .
\]

\section*{Superspace harmonics}
\(q\)-analogs
Andy Wilson
\(q\)-analogs
Permutation statistics Bases for \(\mathbb{F}_{q}^{n}\) Harmonics Ordered set partitions

■ Let \(\mathbf{H}_{n, k}\) be the vector space spanned by all partial derivatives of \(\delta_{n, k}\) in the \(x_{i}\) variables.
- \(\mathbf{H}_{n, k}\) can be decomposed by \(x\) degree into
\[
\mathbf{H}_{n, k}=\bigoplus_{d \geq 0} \mathbf{H}_{n, k}^{(d)}
\]

\section*{Theorem [RW19]}
\[
\sum_{d \geq 0} \mathbf{H}_{n, k}^{(d)} q^{d}=[k]_{q}!S_{n, k}(q)
\]

\section*{Superspace harmonics}

■ Let \(\mathbf{H}_{n, k}\) be the vector space spanned by all partial derivatives of \(\delta_{n, k}\) in the \(x_{i}\) variables.
- \(\mathbf{H}_{n, k}\) can be decomposed by \(x\) degree into
\[
\mathbf{H}_{n, k}=\bigoplus_{d \geq 0} \mathbf{H}_{n, k}^{(d)}
\]

\section*{Theorem [RW19]}
\[
\sum_{d \geq 0} \mathbf{H}_{n, k}^{(d)} q^{d}=[k]_{q}!S_{n, k}(q)
\]

■ We also explore \(\theta\) "derivatives," connections to Poincaré duality and the Hard Lefschetz Theorem.

\section*{Wrapping up}
- Also connections to ...
- coinvariants [Zab19],
- graded dimensions in cohomology [HRS18],
- cyclic actions and roots of unity [RSW04],
- and many other areas.

\section*{Wrapping up}

■ Also connections to ...
- coinvariants [Zab19],
- graded dimensions in cohomology [HRS18],
- cyclic actions and roots of unity [RSW04],
- and many other areas.

■ How to \(q\)-ify your favorite number:
- Look at distributions of nice statistics.
- Count over \(\mathbb{F}_{q}\).
- Find a Vandermonde?

\section*{Wrapping up}

■ Also connections to ...
- coinvariants [Zab19],
- graded dimensions in cohomology [HRS18],
- cyclic actions and roots of unity [RSW04],
- and many other areas.

■ How to \(q\)-ify your favorite number:
- Look at distributions of nice statistics.
- Count over \(\mathbb{F}_{q}\).
- Find a Vandermonde?

■ Good luck!

\section*{Thank you!}

\section*{References I}
E. Artin.

Galois Theory.
Notre Dame Mathematical Lectures, 1942.
(1. Carlitz.

A combinatorial property of \(q\)-Eulerian numbers.
Amer. Math. Monthly, 82:51-54, 1975.
圊 B. DeWitt.
Supermanifolds.
Cambridge Monographs on Mathematical Physics, 2 edition, 1992.
D. Foata.

On the Netto inversion number of a sequence.
Proc. Amer. Math. Soc., 19:236-240, 1968.

\section*{References II}

围 J. Haglund, B. Rhoades, and M. Shimozono.
Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture.
Adv. in Math., 329:851-915, April 2018.
arXiv:1609.07575.
埥 J. Haglund, J. B. Remmel, and A. T. Wilson.
The Delta Conjecture.
Trans. Amer. Math. Soc., 370:4029-4057, February 2018. arXiv:1509.07058.
P. A. MacMahon.

Combinatory Analysis, volume 1.
Cambridge University Press, 1915.

\section*{References III}
\(q\)-analogs
Andy Wilson
\(q\)-analogs
Permutation statistics partitions

Brendon Rhoades.
Ordered set partition statistics and the Delta Conjecture.
J. Comb. Theory, Ser. A, pages 172-217, February 2018.
arXiv:105.04007.
(1) V. Reiner, D. Stanton, and D. White.

The cyclic sieving phenomenon.
J. Comb. Theory, Ser. A, 108:17-50, October 2004.
(i) B. Rhoades and A. T. Wilson.

Vandermondes in superspace.
arXiv:1906.03315, July 2019.
( M. Zabrocki.
A module for the Delta Conjecture.
arXiv:1902.08966, January 2019.```

