Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

q-analogs of factorials and Fubini numbers

Andy Wilson

Portland State University

January 13, 2020

Andy Wilson

q-analogs

- Permutation statistics
- Bases for \mathbb{F}_{0}^{t}
- Harmonics
- Ordered set partitions

- More structure = good!
- For example,
 - $\ensuremath{\mathbb{Z}}$ as a set

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

- More structure = good!
- For example,

$$\mathbb Z$$
 as a set $\ o (\mathbb Z,+)$ as a group

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

- More structure = good!
- For example,

$$\mathbb Z$$
 as a set $ightarrow (\mathbb Z,+)$ as a group $ightarrow (\mathbb Z,+,\cdot)$ as a ring.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

- More structure = good!
- For example,

$$\mathbb Z$$
 as a set $ightarrow (\mathbb Z,+)$ as a group $ightarrow (\mathbb Z,+,\cdot)$ as a ring.

This process is sometimes called "categorification."

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

A q-analog is a "categorified number:"

 $\mathbb{N} \longrightarrow \mathbb{N}[q]$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

A q-analog is a "categorified number:"

 $\mathbb{N} \longrightarrow \mathbb{N}[q]$

Definition

A *q*-analog of $N \in \mathbb{N}$ is a polynomial $f(q) \in \mathbb{N}[q]$ such that

f(1) = N, and
 f(q) carries some "extra information."

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

A q-analog is a "categorified number:"

 $\mathbb{N} \longrightarrow \mathbb{N}[q]$

Definition

A *q*-analog of $N \in \mathbb{N}$ is a polynomial $f(q) \in \mathbb{N}[q]$ such that

f(1) = N, and
 f(q) carries some "extra information."

• We'll see many of examples of what (2) can mean.

An example *q*-analog: $[n]_q!$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Definition

The classical q-analog of $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ is

$$[n]_q! = [n]_q[n-1]_q \dots [2]_q[1]_q$$

where

$$[k]_q = 1 + q + \ldots + q^{k-1} = \frac{q^k - 1}{q - 1}$$

An example *q*-analog: $[n]_q!$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The classical q-analog of $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ is

$$[n]_q! = [n]_q[n-1]_q \dots [2]_q[1]_q$$

where

$$[k]_q = 1 + q + \ldots + q^{k-1} = \frac{q^k - 1}{q - 1}$$

For example,

$$[3]_q = (1+q+q^2)(1+q)(1) = 1+2q+2q^2+q^3.$$

An example *q*-analog: $[n]_q!$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The classical q-analog of $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ is

$$[n]_q! = [n]_q[n-1]_q \dots [2]_q[1]_q$$

where

$$[k]_q = 1 + q + \ldots + q^{k-1} = \frac{q^k - 1}{q - 1}$$

For example,

$$[3]_q = \left(1+q+q^2\right)(1+q)(1) = 1+2q+2q^2+q^3.$$

• Clearly $q \rightarrow 1$ recovers n!, so (1) is satisfied.

among other things.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The symmetric group of n symbols is

$$\mathfrak{S}_n = \{ \text{bijections } \sigma : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\} \}$$

and elements $\sigma \in \mathfrak{S}_n$ are *permutations*.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The symmetric group of n symbols is

$$\mathfrak{S}_n = \{ \mathsf{bijections} \ \sigma : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\} \}$$

and elements $\sigma \in \mathfrak{S}_n$ are *permutations*.

 $\bullet |\mathfrak{S}_n| = n!$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The symmetric group of n symbols is

$$\mathfrak{S}_n = \{ \mathsf{bijections} \ \sigma : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\} \}$$

and elements $\sigma \in \mathfrak{S}_n$ are *permutations*.

 $\bullet |\mathfrak{S}_n| = n!$

• Often written in one-line notation.

• E.g. $\sigma = 52413$ means $\sigma(1) = 5$, $\sigma(2) = 2$, $\sigma(3) = 4$,

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{c}

Harmonics

Ordered set partitions • A *permutation statistic* is an assignment of a number to every permutation $\sigma \in \mathfrak{S}_n$.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions • A *permutation statistic* is an assignment of a number to every permutation $\sigma \in \mathfrak{S}_n$.

Often valuable to know the distribution of a statistic

• i.e. how many σ get assigned the number k.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions • A *permutation statistic* is an assignment of a number to every permutation $\sigma \in \mathfrak{S}_n$.

Often valuable to know the distribution of a statistic

• i.e. how many σ get assigned the number k.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Definition

For $\sigma \in \mathfrak{S}_n$, the *inversion number* of σ is

$$\mathsf{inv}(\sigma) = \#\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

For $\sigma \in \mathfrak{S}_n$, the *inversion number* of σ is

$$\operatorname{inv}(\sigma) = \#\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}.$$

■ For example, inv(526413) = 9.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for **⊮**

Harmonics

Ordered set partitions

Definition

For $\sigma \in \mathfrak{S}_n$, the *inversion number* of σ is

$$\mathsf{inv}(\sigma) = \#\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}$$

• For example, inv(526413) = 9.

 inv(σ) also gives the number of adjacent transpositions required to sort σ to the identity permutation.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Harmonics

Ordered set partitions

Definition

For $\sigma \in \mathfrak{S}_n$, the *inversion number* of σ is

$$\operatorname{inv}(\sigma) = \#\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}$$

- For example, inv(526413) = 9.
- inv(σ) also gives the number of adjacent transpositions required to sort σ to the identity permutation.
- How many $\sigma \in \mathfrak{S}_n$ have $inv(\sigma) = k$ for fixed k?

Andy Wilson

q-analogs

Permutation statistics

Bases for $\mathbb F$

Harmonics

Ordered set partitions

Theorem

 $\sum q^{\mathsf{inv}(\sigma)} = [n]_q!$ $\sigma \in \mathfrak{S}_n$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for ${\mathbb F}$

Harmonics

Ordered set partitions

Theorem

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{inv}(\sigma)}=[n]_q!$$

• Check for n = 3:

$$inv(123) = 0$$
 $inv(213) = 1$ $inv(312) = 2$
 $inv(132) = 1$ $inv(231) = 2$ $inv(321) = 3$
and $[3]_q! = 1 + 2q + 2q^2 + q^3$.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Theorem

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{inv}(\sigma)}=[n]_q!$$

• Check for n = 3:

inv(123) = 0 inv(213) = 1 inv(312) = 2inv(132) = 1 inv(231) = 2 inv(321) = 3

and $[3]_q! = 1 + 2q + 2q^2 + q^3$. • Can be proved by induction on n:

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Theorem

$$\sum_{\sigma\in\mathfrak{S}_n}q^{\mathsf{inv}(\sigma)}=[n]_q!$$

• Check for n = 3:

inv(123) = 0 inv(213) = 1 inv(312) = 2inv(132) = 1 inv(231) = 2 inv(321) = 3

and $[3]_q! = 1 + 2q + 2q^2 + q^3$. Can be proved by induction on *n*:

$$8 \mapsto \ 5 \ 2 \ 3 \ 1 \ 4 \ 7 \ 6$$

Another permutation statistic

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_{0}^{2}

Harmonics

Ordered set partitions

Definition [Mac15]

The major index of $\sigma \in S_n$ is

$$\operatorname{maj}(\sigma) = \sum_{i:\sigma(i) > \sigma(i+1)} i.$$

Another permutation statistic

Andy Wilson

q-analogs

Permutation statistics

Harmonics

Ordered set partitions

Definition [Mac15]

The major index of $\sigma \in S_n$ is

$$\operatorname{maj}(\sigma) = \sum_{i:\sigma(i) > \sigma(i+1)} i.$$

• For example, maj(526413) = 1 + 3 + 4 = 8.

Another permutation statistic

q-analogs

Andy Wilson

q-analogs

Permutation statistics Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Definition [Mac15]

The major index of $\sigma \in S_n$ is

$$\operatorname{maj}(\sigma) = \sum_{i:\sigma(i) > \sigma(i+1)} i.$$

- For example, maj(526413) = 1 + 3 + 4 = 8.
- Major index depends only on the *descent set* of σ .

MacMahon's Theorem

MacMahon's Theorem

Bijective proofs by Foata [Foa68], Carlitz [Car75].

MacMahon's Theorem

Bijective proofs by Foata [Foa68], Carlitz [Car75].
 Exactly one place to insert an n that increases maj by k.

MacMahon's Theorem

a-analogs

q-analogs

Permutation statistics

Bases for ${\mathbb F}$

Harmonics

Ordered set partitions

Theorem [Mac15]

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{maj}(\sigma)} = [n]_q! = \sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}(\sigma)}$$

- Bijective proofs by Foata [Foa68], Carlitz [Car75].
 - Exactly one place to insert an n that increases maj by k.
- Many other permutation statistics share this distribution.

Why is $[n]_q!$ the "correct" *q*-analog for n!?

among other things.

q-analogs Andy Wilson

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions • For q a prime power, consider the vector space \mathbb{F}_q^n .

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions For q a prime power, consider the vector space Fⁿ_q.
How many bases does Fⁿ_q have?

q-analogs

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space Fⁿ_q.
 How many bases does Fⁿ_q have?
- For q = 3, n = 2...

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

For q a prime power, consider the vector space Fⁿ_q.
How many bases does Fⁿ_q have?

For
$$q = 3$$
, $n = 2$...

q-analogs

- q-analogs
- Permutatior statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space Fⁿ_q.
 How many bases does Fⁿ_a have?
- For q = 3, n = 2...
 - 4 lines through the origin

q-analogs

- q-analogs
- Permutatior statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space Fⁿ_q.
 How many bases does Fⁿ_a have?
- For q = 3, n = 2...
 - 4 lines through the origin

q-analogs

- q-analogs
- Permutatior statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space \mathbb{F}_q^n .
- How many bases does \mathbb{F}_q^n have?
- For q = 3, n = 2...
 - 4 lines through the origin

q-analogs

- q-analogs
- Permutatior statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space Fⁿ_q.
 How many bases does Fⁿ_a have?
- For q = 3, n = 2...
 - 4 lines through the origin

q-analogs

- q-analogs
- Permutatior statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space Fⁿ_q.
 How many bases does Fⁿ_a have?
- For q = 3, n = 2...
 - 4 lines through the origin

q-analogs

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_q^n
- Harmonics
- Ordered set partitions

- For q a prime power, consider the vector space \mathbb{F}_q^n .
- How many bases does \mathbb{F}_{q}^{n} have?
- For q = 3, n = 2...
 - 4 lines through the origin
 - (⁴₂) = 6 bases (from linearly independent lines through the origin)

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Theorem

The number of different bases for \mathbb{F}_q^n is

$$\frac{q^{\binom{n}{2}}[n]_q!}{n!}.$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Theorem

The number of different bases for \mathbb{F}_q^n is

$$\frac{q^{\binom{n}{2}}[n]_q!}{n!}.$$

• We will count the number of *ordered* bases.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Theorem

The number of different bases for \mathbb{F}_q^n is

$$\frac{q^{\binom{n}{2}}[n]_q!}{n!}.$$

• We will count the number of *ordered* bases.

Pick a line:
$$\frac{q^n-1}{q-1}$$
.

q-analogs

Andy Wilson

q-analogs

Permutatior statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Theorem

The number of different bases for \mathbb{F}_q^n is

$$\frac{q^{\binom{n}{2}}[n]_q!}{n!}.$$

• We will count the number of *ordered* bases.

Pick a line:
$$\frac{q^n-1}{q-1}$$
.

• Pick another (different) line: $\frac{q^n-q}{q-1}$.

q-analogs

Andy Wilson

q-analogs

Permutatior statistics

Bases for \mathbb{F}_{a}^{n}

Harmonics

Ordered set partitions

Theorem

The number of different bases for \mathbb{F}_q^n is

$$\frac{q^{\binom{n}{2}}[n]_q!}{n!}.$$

- We will count the number of *ordered* bases.
- Pick a line: $\frac{q^n-1}{q-1}$.
- Pick another (different) line: $\frac{q^n-q}{q-1}$.
- Continuing this process, we get

$$\frac{q^n-1}{q-1}\cdot\frac{q^n-q}{q-1}\cdot\ldots\cdot\frac{q^n-q^{n-1}}{q-1}=q^{\binom{n}{2}}[n]_q!$$

q-analogs

Andy Wilson

q-analogs

Permutatior statistics

Bases for \mathbb{F}_{a}^{n}

Harmonics

Ordered set partitions

Theorem

The number of different bases for \mathbb{F}_q^n is

$$\frac{q^{\binom{n}{2}}[n]_q!}{n!}.$$

- We will count the number of *ordered* bases.
- Pick a line: $\frac{q^n-1}{q-1}$.
- Pick another (different) line: $\frac{q^n-q}{q-1}$.
- Continuing this process, we get

$$\frac{q^n-1}{q-1}\cdot\frac{q^n-q}{q-1}\cdot\ldots\cdot\frac{q^n-q^{n-1}}{q-1}=q^{\binom{n}{2}}[n]_q!.$$

Divide by n! to "unorder" the bases.

Why is $[n]_q!$ the "correct" *q*-analog for n!?

among other things.

q-analogs	We work in the multivariate polynomial ring $\mathbb{Q}[x_1, x_2, \ldots, x_n]$.
Andy Wilson	
q-analogs	
Permutation statistics	
Bases for \mathbb{F}_q^n	
Harmonics	
Ordered set partitions	

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for $\mathbb F$

Harmonics

Ordered set partitions We work in the multivariate polynomial ring $\mathbb{Q}[x_1, x_2, \ldots, x_n]$.

Definition

The Vandermonde matrix is the matrix

$$M_{n} = \left[x_{i}^{j-1}\right]_{i,j=1}^{n} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1}. \end{bmatrix}$$

Its determinant is the Vandermonde determinant, written δ_n .

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for $\mathbb F$

Harmonics

Ordered set partitions We work in the multivariate polynomial ring $\mathbb{Q}[x_1, x_2, \ldots, x_n]$.

Definition

The Vandermonde matrix is the matrix

$$M_{n} = \left[x_{i}^{j-1}\right]_{i,j=1}^{n} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1} \end{bmatrix}$$

Its determinant is the Vandermonde determinant, written δ_n .

• M_n appears in polynomial interpolation.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_{0}^{1}

Harmonics

Ordered set partitions We work in the multivariate polynomial ring $\mathbb{Q}[x_1, x_2, \dots, x_n]$.

Definition

The Vandermonde matrix is the matrix

$$M_{n} = \left[x_{i}^{j-1}\right]_{i,j=1}^{n} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1} \end{bmatrix}$$

Its determinant is the Vandermonde determinant, written δ_n .

• M_n appears in polynomial interpolation.

• δ_n can also be written as

$$\delta_n = \prod_{1 \le i < j \le n} (x_j - x_i).$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_{a}^{n}

Harmonics

Ordered set partitions

Definition

The (type A) harmonic space \mathbf{H}_n is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_n .

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The (type A) harmonic space \mathbf{H}_n is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_n .

For example,

$$\delta_3 = \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix}$$

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The (type A) harmonic space \mathbf{H}_n is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_n .

For example,

$$\delta_3 = \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

so this polynomial is in H_3 .

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

The (type A) harmonic space \mathbf{H}_n is the vector space spanned by all partial derivatives of the Vandermonde determinant δ_n .

For example,

$$\delta_3 = \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

so this polynomial is in H_3 . So is

$$\partial_{x_3}(\delta_3) = (x_2 - x_1)(x_3 - x_2) + (x_2 - x_1)(x_3 - x_1).$$

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions • Why study the harmonic space?

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_{a}^{\prime}

Harmonics

Ordered set partitions

- Why study the harmonic space?
- \mathfrak{S}_n acts on $f \in \mathbb{Q}[x_1, x_2, \dots, x_n]$ by permuting variables, e.g.

$$213 \cdot \left(x_1^2 x_3 - x_2\right) = x_2^2 x_3 - x_1.$$

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions

- Why study the harmonic space?
- \mathfrak{S}_n acts on $f \in \mathbb{Q}[x_1, x_2, \dots, x_n]$ by permuting variables, e.g.

$$213 \cdot \left(x_1^2 x_3 - x_2\right) = x_2^2 x_3 - x_1.$$

• *f* is symmetric if $\sigma \cdot f = f$ for every $\sigma \in \mathfrak{S}_n$.

q-analogs

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_{a}^{t}
- Harmonics
- Ordered set partitions

- Why study the harmonic space?
- \mathfrak{S}_n acts on $f \in \mathbb{Q}[x_1, x_2, \dots, x_n]$ by permuting variables, e.g.

$$213 \cdot \left(x_1^2 x_3 - x_2\right) = x_2^2 x_3 - x_1$$

- f is symmetric if $\sigma \cdot f = f$ for every $\sigma \in \mathfrak{S}_n$.
- H_n is isomorphic (as a graded S_n module) to the coinvariant ring:

$$\frac{\mathbb{Q}[x_1, x_2, \dots, x_n]}{\langle f \text{ symmetric with no constant term} \rangle}$$

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_{a}^{t}
- Harmonics
- Ordered set partitions

- Why study the harmonic space?
- \mathfrak{S}_n acts on $f \in \mathbb{Q}[x_1, x_2, \dots, x_n]$ by permuting variables, e.g.

$$213 \cdot \left(x_1^2 x_3 - x_2\right) = x_2^2 x_3 - x_1.$$

- f is symmetric if $\sigma \cdot f = f$ for every $\sigma \in \mathfrak{S}_n$.
- H_n is isomorphic (as a graded S_n module) to the coinvariant ring:

$$\frac{\mathbb{Q}[x_1, x_2, \dots, x_n]}{\langle f \text{ symmetric with no constant term} \rangle}$$

■ This "decomposes" Q[x₁, x₂,..., x_n] into a symmetric (invariant) piece and a coinvariant piece.

Grading by degree

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions **H**_n can be decomposed by degree into

$$\mathbf{H}_n = \bigoplus_{d \ge 0} \mathbf{H}_n^{(d)}.$$

Grading by degree

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions **H**_n can be decomposed by degree into

$$\mathbf{H}_n = \bigoplus_{d>0} \mathbf{H}_n^{(d)}.$$

For example,

$$\delta_3 \in \mathbf{H}_3^{(3)} \qquad \partial_{x_3}(\delta_3) \in \mathbf{H}_3^{(2)}.$$

Dimension and graded dimension

Dimension and graded dimension

Bases for \mathbf{H}_n

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions An example basis for **H**₃:

$$egin{aligned} &\delta_3 \in \mathsf{H}_3^{(3)} \ &\partial_{x_1}(\delta_3), \partial_{x_2}(\delta_3) \in \mathsf{H}_3^{(2)} \ &\partial_{x_1}^2(\delta_3), \partial_{x_1}\partial_{x_2}(\delta_3) \in \mathsf{H}_3^{(1)} \ &\partial_{x_1}^2\partial_{x_2}(\delta_3) \in \mathsf{H}_3^{(0)} \end{aligned}$$

Bases for \mathbf{H}_n

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions ■ An example basis for **H**₃:

$$\begin{split} \delta_3 \in \mathsf{H}_3^{(3)} \\ \partial_{x_1}(\delta_3), \partial_{x_2}(\delta_3) \in \mathsf{H}_3^{(2)} \\ \partial_{x_1}^2(\delta_3), \partial_{x_1}\partial_{x_2}(\delta_3) \in \mathsf{H}_3^{(1)} \\ \partial_{x_1}^2\partial_{x_2}(\delta_3) \in \mathsf{H}_3^{(0)} \end{split}$$

Bases can be derived from permutation statistics.

What's new?

Ordered set partitions

All of this work is pretty classical.

What's new?

Harmonics

Ordered set partitions

- All of this work is pretty classical.
- What's happening currently?

What's new?

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}
- Harmonics

Ordered set partitions

- All of this work is pretty classical.
- What's happening currently?
- One branch is to generalize permutations to ordered set partitions.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

An ordered set partition $\pi \in \mathcal{OP}_{n,k}$ is a *k*-tuple of sets

$$\pi = (\pi_1, \pi_2, \ldots, \pi_k) = \pi_1 |\pi_2| \ldots |\pi_k|$$

such that

$$\bigsqcup_{i=1}^k \pi_i = \{1, 2, \dots, n\}.$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

An ordered set partition $\pi \in \mathcal{OP}_{n,k}$ is a *k*-tuple of sets

$$\pi = (\pi_1, \pi_2, \ldots, \pi_k) = \pi_1 |\pi_2| \ldots |\pi_k|$$

such that

$$\bigsqcup_{i=1}^k \pi_i = \{1, 2, \dots, n\}.$$

• For example, $245|3|16 \in \mathcal{OP}_{6,3}$.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

An ordered set partition $\pi \in \mathcal{OP}_{n,k}$ is a *k*-tuple of sets

$$\pi = (\pi_1, \pi_2, \ldots, \pi_k) = \pi_1 |\pi_2| \ldots |\pi_k|$$

such that

$$\bigsqcup_{i=1}^k \pi_i = \{1, 2, \dots, n\}.$$

• For example, $245|3|16 \in \mathcal{OP}_{6,3}$.

• Note that $\mathcal{OP}_{n,n} = \mathfrak{S}_n$.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

Definition

An ordered set partition $\pi \in \mathcal{OP}_{n,k}$ is a *k*-tuple of sets

$$\pi = (\pi_1, \pi_2, \ldots, \pi_k) = \pi_1 |\pi_2| \ldots |\pi_k|$$

such that

$$\bigsqcup_{i=1}^k \pi_i = \{1, 2, \dots, n\}.$$

- For example, $245|3|16 \in \mathcal{OP}_{6,3}$.
- Note that $\mathcal{OP}_{n,n} = \mathfrak{S}_n$.
- $\mathcal{OP}_{n,k}$ corresponds to surjections

$$\{1,2,\ldots,n\}\to\{1,2,\ldots,k\}.$$

Counting ordered set partitions

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}'_{d}

Harmonics

Ordered set partitions

• $|\mathcal{OP}_{n,k}| = k! S_{n,k}$, where $S_{n,k}$ is the Stirling number of the second kind, defined recursively by

$$S_{n,k} = kS_{n-1,k} + S_{n-1,k-1}.$$

Counting ordered set partitions

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

• $|\mathcal{OP}_{n,k}| = k! S_{n,k}$, where $S_{n,k}$ is the Stirling number of the second kind, defined recursively by

$$S_{n,k} = kS_{n-1,k} + S_{n-1,k-1}.$$

These are sometimes called Fubini numbers.

Counting ordered set partitions

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}

Harmonics

Ordered set partitions

• $|\mathcal{OP}_{n,k}| = k! S_{n,k}$, where $S_{n,k}$ is the Stirling number of the second kind, defined recursively by

$$S_{n,k} = kS_{n-1,k} + S_{n-1,k-1}.$$

• These are sometimes called *Fubini numbers*.

A q-analog for Fubini numbers

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions

• A natural q-analog is $[k]_q!S_{n,k}(q)$, where $S_{n,k}(q) = [k]_qS_{n-1,k}(q) + S_{n-1,k-1}(q).$

A q-analog for Fubini numbers

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_{0}^{t}

Harmonics

Ordered set partitions

A natural
$$q$$
-analog is $[k]_q!S_{n,k}(q)$, where $S_{n,k}(q)=[k]_qS_{n-1,k}(q)+S_{n-1,k-1}(q).$

For example,

$$[3]_q!S_{4,3}(q) = q^5 + 4q^4 + 9q^3 + 11q^2 + 8q + 3.$$

Recent work (by me and many others) has extended results from [n]_q! to [k]_q!S_{n,k}(q), using...

A q-analog for Fubini numbers

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_{0}^{t}

Harmonics

Ordered set partitions

A natural q-analog is
$$[k]_q!S_{n,k}(q)$$
, where $S_{n,k}(q)=[k]_qS_{n-1,k}(q)+S_{n-1,k-1}(q).$

For example,

$$[3]_q!S_{4,3}(q) = q^5 + 4q^4 + 9q^3 + 11q^2 + 8q + 3.$$

Recent work (by me and many others) has extended results from [n]_q! to [k]_q!S_{n,k}(q), using...

- ordered set partition statistics,
- spanning sets for \mathbb{F}_a^k , and
- superspace harmonics.

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{c}

Harmonics

Ordered set partitions

Given $\pi \in \mathcal{OP}_{n,k}$, rearrange its blocks so that the resulting permutation has minimal major index.

q-analogs

Andy Wilson

- q-analogs
- Permutatior statistics
- Bases for \mathbb{F}_{q}^{n}
- Harmonics
- Ordered set partitions

- Given $\pi \in \mathcal{OP}_{n,k}$, rearrange its blocks so that the resulting permutation has minimal major index.
- \blacksquare For example, 245|138|67 \rightarrow 245|813|67, which has maj 4.

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_{a}^{\prime}
- Harmonics
- Ordered set partitions

- Given $\pi \in \mathcal{OP}_{n,k}$, rearrange its blocks so that the resulting permutation has minimal major index.
- For example, $245|138|67 \rightarrow 245|813|67$, which has maj 4.
- Denote this number minimaj(π).

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_{0}^{1}
- Harmonics

Ordered set partitions

- Given $\pi \in \mathcal{OP}_{n,k}$, rearrange its blocks so that the resulting permutation has minimal major index.
- For example, $245|138|67 \rightarrow 245|813|67$, which has maj 4.
- Denote this number minimaj(π).

Theorem [HRW18, Rho18]

$$\sum_{\pi\in\mathcal{OP}_{n,k}}q^{ ext{minimaj}(\pi)}=[k]_q!S_{n,k}(q).$$

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}_{0}^{1}
- Harmonics

Ordered set partitions

- Given $\pi \in \mathcal{OP}_{n,k}$, rearrange its blocks so that the resulting permutation has minimal major index.
- For example, $245|138|67 \rightarrow 245|813|67$, which has maj 4.
- Denote this number minimaj (π) .

Theorem [HRW18, Rho18]

$$\sum_{\pi \in \mathcal{OP}_{n,k}} q^{\mathsf{minimaj}(\pi)} = [k]_q! S_{n,k}(q).$$

 Several other equidistributed statistics are studied in [HRW18].

Spanning sets for \mathbb{F}_q^k

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for I

Harmonics

Ordered set partitions

Theorem

When $n \ge k$, the number of ordered spanning sets (v_1, v_2, \ldots, v_n) for \mathbb{F}_a^k (q a prime power) is

 $q^{\binom{k}{2}}[k]_q!S_{n,k}(q).$

Spanning sets for \mathbb{F}_q^k

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for I

Harmonics

Ordered set partitions

Theorem

When $n \ge k$, the number of ordered spanning sets (v_1, v_2, \ldots, v_n) for \mathbb{F}_q^k (q a prime power) is

$$q^{\binom{k}{2}}[k]_q!S_{n,k}(q).$$

For example, if q = 3, n = 3, k = 2, we get

$$4 \cdot 1 \cdot 3 + 4 \cdot 3 \cdot 4 = 60$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{c}

Harmonics

Ordered set partitions

- Let Ω_n denote the space of "polynomials" in two types of variables:
 - x_1, x_2, \ldots, x_n , which commute, and

• $\theta_1, \theta_2, \ldots, \theta_n$, which *anti-commute*, so

$$\theta_i\theta_j=-\theta_j\theta_i\Longrightarrow\theta_i^2=0.$$

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}'_{α}
- Harmonics
- Ordered set partitions

- Let Ω_n denote the space of "polynomials" in two types of variables:
 - x_1, x_2, \ldots, x_n , which commute, and
 - $\theta_1, \theta_2, \ldots, \theta_n$, which *anti-commute*, so

$$\theta_i \theta_j = -\theta_j \theta_i \Longrightarrow \theta_i^2 = 0.$$

• The two types of variables commute with one another.

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}'_{α}
- Harmonics
- Ordered set partitions

- Let Ω_n denote the space of "polynomials" in two types of variables:
 - x_1, x_2, \ldots, x_n , which commute, and
 - $\theta_1, \theta_2, \ldots, \theta_n$, which *anti-commute*, so

$$\theta_i\theta_j=-\theta_j\theta_i\Longrightarrow\theta_i^2=0.$$

The two types of variables commute with one another.For example,

$$x_2^4\theta_1\theta_3=\theta_1\theta_3x_2^4=-\theta_3\theta_1x_2^4\in\Omega_3.$$

q-analogs

Andy Wilson

- q-analogs
- Permutation statistics
- Bases for \mathbb{F}'_{α}
- Harmonics
- Ordered set partitions

- Let Ω_n denote the space of "polynomials" in two types of variables:
 - x_1, x_2, \ldots, x_n , which commute, and
 - $\theta_1, \theta_2, \ldots, \theta_n$, which *anti-commute*, so

$$\theta_i \theta_j = -\theta_j \theta_i \Longrightarrow \theta_i^2 = 0.$$

The two types of variables commute with one another.For example,

$$x_2^4\theta_1\theta_3=\theta_1\theta_3x_2^4=-\theta_3\theta_1x_2^4\in\Omega_3.$$

The objects in Ω_n are called superpolynomials and appear in mathematical physics and differential algebra [DeW92].

The superspace Vandermonde

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions

■ For positive integers *n* ≥ *k*, define the *superspace Vandermonde matrix* to be

$$M_{n,k} = \begin{bmatrix} 1 & x_1 & \dots & x_1^{k-1} & \theta_1 x_1^{k-1} & \dots & \theta_1 x_1^{k-1} \\ 1 & x_2 & \dots & x_2^{k-1} & \theta_2 x_2^{k-1} & \dots & \theta_2 x_2^{k-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{k-1} & \theta_n x_n^{k-1} & \dots & \theta_n x_n^{k-1} \end{bmatrix}$$

The superspace Vandermonde

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}_{0}^{2}

Harmonics

Ordered set partitions

■ For positive integers *n* ≥ *k*, define the *superspace Vandermonde matrix* to be

$$M_{n,k} = \begin{bmatrix} 1 & x_1 & \dots & x_1^{k-1} & \theta_1 x_1^{k-1} & \dots & \theta_1 x_1^{k-1} \\ 1 & x_2 & \dots & x_2^{k-1} & \theta_2 x_2^{k-1} & \dots & \theta_2 x_2^{k-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{k-1} & \theta_n x_n^{k-1} & \dots & \theta_n x_n^{k-1} \end{bmatrix}$$

• Note that $M_{n,n} = M_n$, the usual Vandermonde matrix.

The superspace Vandermonde

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions • For positive integers $n \ge k$, define the superspace Vandermonde matrix to be

$$M_{n,k} = \begin{bmatrix} 1 & x_1 & \dots & x_1^{k-1} & \theta_1 x_1^{k-1} & \dots & \theta_1 x_1^{k-1} \\ 1 & x_2 & \dots & x_2^{k-1} & \theta_2 x_2^{k-1} & \dots & \theta_2 x_2^{k-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{k-1} & \theta_n x_n^{k-1} & \dots & \theta_n x_n^{k-1} \end{bmatrix}$$

• Note that $M_{n,n} = M_n$, the usual Vandermonde matrix.

Define the superspace Vandermonde determinant to be

$$\delta_{n,k} = \det\left(M_{n,k}\right)$$

for an appropriate non-commutative determinant.

An example superspace Vandermonde

$$M_{3,2} = \begin{bmatrix} 1 & x_1 & \theta_1 x_1 \\ 1 & x_2 & \theta_2 x_2 \\ 1 & x_3 & \theta_3 x_3 \end{bmatrix}$$

An example superspace Vandermonde

$$M_{3,2} = \begin{bmatrix} 1 & x_1 & \theta_1 x_1 \\ 1 & x_2 & \theta_2 x_2 \\ 1 & x_3 & \theta_3 x_3 \end{bmatrix}$$

$$\delta_{3,2} = \det(M_{3,2})$$

$$= \theta_3 x_2 x_3 - \theta_2 x_2 x_3 - \theta_3 x_1 x_3$$

$$+ \theta_1 x_1 x_3 + \theta_2 x_1 x_2 - \theta_1 x_1 x_2$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions

Let H_{n,k} be the vector space spanned by all partial derivatives of δ_{n,k} in the x_i variables.

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}_{a}^{\prime}

Harmonics

Ordered set partitions

- Let H_{n,k} be the vector space spanned by all partial derivatives of δ_{n,k} in the x_i variables.
- $\mathbf{H}_{n,k}$ can be decomposed by x degree into

$$\mathbf{H}_{n,k} = \bigoplus_{d \ge 0} \mathbf{H}_{n,k}^{(d)}.$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{α}

Harmonics

Ordered set partitions

Let H_{n,k} be the vector space spanned by all partial derivatives of δ_{n,k} in the x_i variables.

H_{*n,k*} can be decomposed by x degree into

$$\mathbf{H}_{n,k} = \bigoplus_{d \ge 0} \mathbf{H}_{n,k}^{(d)}.$$

Theorem [RW19]

$$\sum_{d\geq 0} \mathsf{H}_{n,k}^{(d)} q^d = [k]_q! S_{n,k}(q)$$

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{c}

Harmonics

Ordered set partitions • Let $\mathbf{H}_{n,k}$ be the vector space spanned by all partial derivatives of $\delta_{n,k}$ in the x_i variables.

• $\mathbf{H}_{n,k}$ can be decomposed by x degree into

$$\mathbf{H}_{n,k} = \bigoplus_{d>0} \mathbf{H}_{n,k}^{(d)}.$$

Theorem [RW19]

$$\sum_{d\geq 0} \mathsf{H}_{n,k}^{(d)} q^d = [k]_q! S_{n,k}(q)$$

We also explore θ "derivatives," connections to Poincaré duality and the Hard Lefschetz Theorem.

Wrapping up

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions

Also connections to . . .

- coinvariants [Zab19],
- graded dimensions in cohomology [HRS18],
- cyclic actions and roots of unity [RSW04],
- and many other areas.

Wrapping up

q-analogs

Andy Wilson

q-analogs

Permutatior statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions

Also connections to . . .

- coinvariants [Zab19],
- graded dimensions in cohomology [HRS18],
- cyclic actions and roots of unity [RSW04],
- and many other areas.
- How to *q*-ify your favorite number:
 - Look at distributions of nice statistics.
 - Count over \mathbb{F}_q .
 - Find a Vandermonde?

Wrapping up

q-analogs

Andy Wilson

q-analogs

Permutatior statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions

Also connections to . . .

- coinvariants [Zab19],
- graded dimensions in cohomology [HRS18],
- cyclic actions and roots of unity [RSW04],
- and many other areas.
- How to *q*-ify your favorite number:
 - Look at distributions of nice statistics.
 - Count over \mathbb{F}_q .
 - Find a Vandermonde?

Good luck!

q-ana	logs
-------	------

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}_q^n

Harmonics

Ordered set partitions

Thank you!

References I

q-analogs

Andy Wilson

q-analogs

Permutatio statistics

Bases for \mathbb{F}_{d}^{\prime}

Harmonics

Ordered set partitions

E. Artin.

Galois Theory. Notre Dame Mathematical Lectures, 1942.

L. Carlitz.

A combinatorial property of *q*-Eulerian numbers. *Amer. Math. Monthly*, 82:51–54, 1975.

B. DeWitt.

Supermanifolds.

Cambridge Monographs on Mathematical Physics, 2 edition, 1992.

D. Foata.

On the Netto inversion number of a sequence.

Proc. Amer. Math. Soc., 19:236-240, 1968.

References II

q-analogs

Andy Wilson

q-analogs

Permutatior statistics

Bases for \mathbb{F}'_{a}

Harmonics

Ordered set partitions

J. Haglund, B. Rhoades, and M. Shimozono.

Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture.

Adv. in Math., 329:851–915, April 2018. arXiv:1609.07575.

J. Haglund, J. B. Remmel, and A. T. Wilson.

The Delta Conjecture.

Trans. Amer. Math. Soc., 370:4029–4057, February 2018. arXiv:1509.07058.

P. A. MacMahon.

Combinatory Analysis, volume 1.

Cambridge University Press, 1915.

References III

q-analogs

Andy Wilson

q-analogs

Permutation statistics

Bases for $\mathbb F$

Harmonics

Ordered set partitions

Brendon Rhoades.

Ordered set partition statistics and the Delta Conjecture. *J. Comb. Theory, Ser. A*, pages 172–217, February 2018. arXiv:105.04007.

V. Reiner, D. Stanton, and D. White.
 The cyclic sieving phenomenon.
 J. Comb. Theory, Ser. A, 108:17–50, October 2004.

B. Rhoades and A. T. Wilson.

Vandermondes in superspace.

arXiv:1906.03315, July 2019.

M. Zabrocki.

A module for the Delta Conjecture. arXiv:1902.08966, January 2019.