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Categorification

More structure = good!

For example,

Z as a set

→ (Z,+) as a group

→ (Z,+, ·) as a ring.

This process is sometimes called “categorification.”



q-analogs

Andy Wilson

q-analogs

Permutation
statistics

Bases for Fnq

Harmonics

Ordered set
partitions

Categorification

More structure = good!

For example,

Z as a set

→ (Z,+) as a group

→ (Z,+, ·) as a ring.

This process is sometimes called “categorification.”



q-analogs

Andy Wilson

q-analogs

Permutation
statistics

Bases for Fnq

Harmonics

Ordered set
partitions

Categorification

More structure = good!

For example,

Z as a set → (Z,+) as a group

→ (Z,+, ·) as a ring.

This process is sometimes called “categorification.”



q-analogs

Andy Wilson

q-analogs

Permutation
statistics

Bases for Fnq

Harmonics

Ordered set
partitions

Categorification

More structure = good!

For example,

Z as a set → (Z,+) as a group → (Z,+, ·) as a ring.

This process is sometimes called “categorification.”



q-analogs

Andy Wilson

q-analogs

Permutation
statistics

Bases for Fnq

Harmonics

Ordered set
partitions

Categorification

More structure = good!

For example,

Z as a set → (Z,+) as a group → (Z,+, ·) as a ring.

This process is sometimes called “categorification.”



q-analogs

Andy Wilson

q-analogs

Permutation
statistics

Bases for Fnq

Harmonics

Ordered set
partitions

q-analogs

A q-analog is a “categorified number:”

N −→ N[q]

Definition

A q-analog of N ∈ N is a polynomial f (q) ∈ N[q] such that

1 f (1) = N, and

2 f (q) carries some “extra information.”

We’ll see many of examples of what (2) can mean.
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An example q-analog: [n]q!

Definition

The classical q-analog of n! = n · (n − 1) · . . . · 2 · 1 is

[n]q! = [n]q[n − 1]q . . . [2]q[1]q

where

[k]q = 1 + q + . . .+ qk−1 =
qk − 1

q − 1
.

For example,

[3]q =
(
1 + q + q2

)
(1 + q)(1) = 1 + 2q + 2q2 + q3.

Clearly q → 1 recovers n!, so (1) is satisfied.
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Why is [n]q! the “correct” q-analog for n!?

It encodes information about. . .

distributions of statistics over permutations,

bases for Fn
q,

the space of harmonics of Q[x1, x2, . . . , xn],

among other things.
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Permutation statistics

Definition

The symmetric group of n symbols is

Sn = {bijections σ : {1, 2, . . . , n} → {1, 2, . . . , n}}

and elements σ ∈ Sn are permutations.

|Sn| = n!

Often written in one-line notation.

E.g. σ = 52413 means σ(1) = 5, σ(2) = 2, σ(3) = 4, . . . .
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Permutation statistics

A permutation statistic is an assignment of a number to
every permutation σ ∈ Sn.

Often valuable to know the distribution of a statistic

i.e. how many σ get assigned the number k .
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Inversion number

Definition

For σ ∈ Sn, the inversion number of σ is

inv(σ) = #{(i , j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}.

For example, inv(526413) = 9.

inv(σ) also gives the number of adjacent transpositions
required to sort σ to the identity permutation.

How many σ ∈ Sn have inv(σ) = k for fixed k?
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The distribution of inv on Sn

Theorem ∑
σ∈Sn

qinv(σ) = [n]q!

Check for n = 3:

inv(123) = 0 inv(213) = 1 inv(312) = 2

inv(132) = 1 inv(231) = 2 inv(321) = 3

and [3]q! = 1 + 2q + 2q2 + q3.

Can be proved by induction on n:

8 7→ 5 2 3 1 4 7 6
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Another permutation statistic

Definition [Mac15]

The major index of σ ∈ Sn is

maj(σ) =
∑

i :σ(i)>σ(i+1)

i .

For example, maj(526413) = 1 + 3 + 4 = 8.

Major index depends only on the descent set of σ.
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MacMahon’s Theorem

Theorem [Mac15]∑
σ∈Sn

qmaj(σ) = [n]q! =
∑
σ∈Sn

qinv(σ)

Bijective proofs by Foata [Foa68], Carlitz [Car75].

Exactly one place to insert an n that increases maj by k .

Many other permutation statistics share this distribution.
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Fn
q

For q a prime power, consider the vector space Fn
q.

How many bases does Fn
q have?

For q = 3, n = 2. . .

4 lines through the origin(
4
2

)
= 6 bases (from linearly independent lines through the

origin)

0 1 2

0

1

2
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Bases for Fn
q

Theorem

The number of different bases for Fn
q is

q(n2)[n]q!

n!
.

We will count the number of ordered bases.

Pick a line: qn−1
q−1 .

Pick another (different) line: qn−q
q−1 .

Continuing this process, we get

qn − 1

q − 1
· q

n − q

q − 1
· . . . · q

n − qn−1

q − 1
= q(n2)[n]q!.

Divide by n! to “unorder” the bases.
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n − q

q − 1
· . . . · q

n − qn−1

q − 1
= q(n2)[n]q!.

Divide by n! to “unorder” the bases.
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Why is [n]q! the “correct” q-analog for n!?

It encodes information about. . .

distributions of statistics over permutations,

bases for Fn
q,

the space of harmonics of Q[x1, x2, . . . , xn],

among other things.
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Vandermonde

We work in the multivariate polynomial ring Q[x1, x2, . . . , xn].

Definition

The Vandermonde matrix is the matrix

Mn =
[
x j−1i

]n
i ,j=1

=


1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

. . .
...

1 xn x2n . . . xn−1n .


Its determinant is the Vandermonde determinant, written δn.

Mn appears in polynomial interpolation.
δn can also be written as

δn =
∏

1≤i<j≤n
(xj − xi ) .
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Harmonics

Definition

The (type A) harmonic space Hn is the vector space spanned
by all partial derivatives of the Vandermonde determinant δn.

For example,

δ3 =

∣∣∣∣∣∣
1 x1 x21
1 x2 x22
1 x3 x23

∣∣∣∣∣∣

= (x2 − x1)(x3 − x1)(x3 − x2)

so this polynomial is in H3. So is

∂x3(δ3) = (x2 − x1)(x3 − x2) + (x2 − x1)(x3 − x1).
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Coinvariants

Why study the harmonic space?

Sn acts on f ∈ Q[x1, x2, . . . , xn] by permuting variables,
e.g.

213 ·
(
x21x3 − x2

)
= x22x3 − x1.

f is symmetric if σ · f = f for every σ ∈ Sn.

Hn is isomorphic (as a graded Sn module) to the
coinvariant ring:

Q[x1, x2, . . . , xn]

〈f symmetric with no constant term〉
.

This “decomposes” Q[x1, x2, . . . , xn] into a symmetric
(invariant) piece and a coinvariant piece.
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Grading by degree

Hn can be decomposed by degree into

Hn =
⊕
d≥0

H
(d)
n .

For example,

δ3 ∈ H
(3)
3 ∂x3(δ3) ∈ H

(2)
3 .
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Dimension and graded dimension

Theorem [Art42]

dim(Hn) = n!

∑
d≥0

dim
(
H

(d)
n

)
qd = [n]q!
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Bases for Hn

An example basis for H3:

δ3 ∈ H
(3)
3

∂x1(δ3), ∂x2(δ3) ∈ H
(2)
3

∂2x1(δ3), ∂x1∂x2(δ3) ∈ H
(1)
3

∂2x1∂x2(δ3) ∈ H
(0)
3

Bases can be derived from permutation statistics.
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What’s new?

All of this work is pretty classical.

What’s happening currently?

One branch is to generalize permutations to ordered set
partitions.
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Ordered set partitions

Definition

An ordered set partition π ∈ OPn,k is a k-tuple of sets

π = (π1, π2, . . . , πk) = π1|π2| . . . |πk

such that
k⊔

i=1

πi = {1, 2, . . . , n}.

For example, 245|3|16 ∈ OP6,3.

Note that OPn,n = Sn.

OPn,k corresponds to surjections

{1, 2, . . . , n} → {1, 2, . . . , k}.
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Counting ordered set partitions

|OPn,k | = k!Sn,k , where Sn,k is the Stirling number of the
second kind, defined recursively by

Sn,k = kSn−1,k + Sn−1,k−1.

These are sometimes called Fubini numbers.

1
1 2
1 6 6
1 14 26 24
...

. . .

1 n!
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A q-analog for Fubini numbers

A natural q-analog is [k]q!Sn,k(q), where

Sn,k(q) = [k]qSn−1,k(q) + Sn−1,k−1(q).

For example,

[3]q!S4,3(q) = q5 + 4q4 + 9q3 + 11q2 + 8q + 3.

Recent work (by me and many others) has extended
results from [n]q! to [k]q!Sn,k(q), using. . .

ordered set partition statistics,
spanning sets for Fk

q , and
superspace harmonics.
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The statistic minimaj

Given π ∈ OPn,k , rearrange its blocks so that the
resulting permutation has minimal major index.

For example, 245|138|67→ 245|813|67, which has maj 4.

Denote this number minimaj(π).

Theorem [HRW18, Rho18]∑
π∈OPn,k

qminimaj(π) = [k]q!Sn,k(q).

Several other equidistributed statistics are studied in
[HRW18].
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Spanning sets for Fk
q

Theorem

When n ≥ k , the number of ordered spanning sets

(v1, v2, . . . , vn)

for Fk
q (q a prime power) is

q(k2)[k]q!Sn,k(q).

For example, if q = 3, n = 3, k = 2, we get

4 · 1 · 3 + 4 · 3 · 4 = 60
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Superspace

Let Ωn denote the space of “polynomials” in two types of
variables:

x1, x2, . . . , xn, which commute, and
θ1, θ2, . . . , θn, which anti-commute, so

θiθj = −θjθi =⇒ θ2i = 0.

The two types of variables commute with one another.

For example,

x42θ1θ3 = θ1θ3x
4
2 = −θ3θ1x42 ∈ Ω3.

The objects in Ωn are called superpolynomials and appear
in mathematical physics and differential algebra [DeW92].
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θiθj = −θjθi =⇒ θ2i = 0.

The two types of variables commute with one another.

For example,

x42θ1θ3 = θ1θ3x
4
2 = −θ3θ1x42 ∈ Ω3.

The objects in Ωn are called superpolynomials and appear
in mathematical physics and differential algebra [DeW92].
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The superspace Vandermonde

For positive integers n ≥ k, define the superspace
Vandermonde matrix to be

Mn,k =


1 x1 . . . xk−11 θ1x

k−1
1 . . . θ1x

k−1
1

1 x2 . . . xk−12 θ2x
k−1
2 . . . θ2x

k−1
2

...
...

. . .
...

...
. . .

...
1 xn . . . xk−1n θnx

k−1
n . . . θnx

k−1
n



Note that Mn,n = Mn, the usual Vandermonde matrix.

Define the superspace Vandermonde determinant to be

δn,k = det (Mn,k)

for an appropriate non-commutative determinant.
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An example superspace Vandermonde

M3,2 =

1 x1 θ1x1
1 x2 θ2x2
1 x3 θ3x3



δ3,2 = det(M3,2)

= θ3x2x3 − θ2x2x3 − θ3x1x3
+ θ1x1x3 + θ2x1x2 − θ1x1x2
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Superspace harmonics

Let Hn,k be the vector space spanned by all partial
derivatives of δn,k in the xi variables.

Hn,k can be decomposed by x degree into

Hn,k =
⊕
d≥0

H
(d)
n,k .

Theorem [RW19] ∑
d≥0

H
(d)
n,kq

d = [k]q!Sn,k(q)

We also explore θ “derivatives,” connections to Poincaré
duality and the Hard Lefschetz Theorem.
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Wrapping up

Also connections to . . .

coinvariants [Zab19],
graded dimensions in cohomology [HRS18],
cyclic actions and roots of unity [RSW04],
and many other areas.

How to q-ify your favorite number:

Look at distributions of nice statistics.
Count over Fq.
Find a Vandermonde?

Good luck!
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Thank you!
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