Growing Our Understanding of Tree Graphs

James Mahoney 3-2-15

Spanning Trees

- Papa Bear: Too many edges (contains cycles).
- Mama Bear: Too few edges (some vertices not touched).
- Spanning Tree: Just the right number of edges.
- If a graph has n vertices then a spanning tree will have n-1 edges.

Tree Graphs

• Let *G* be a connected graph. The *tree graph* of *G*, *T*(*G*), has vertices which are the spanning trees of *G*, where two vertices are adjacent iff you can change from one to the other by moving exactly one edge.

Example: C_4

Example: C_4

Example: C_4

$$T(C_4) = K_4$$

Example: $K_4 - e$

Example: $K_4 - e$

Initial Investigation

- A graph *G* is *hamiltonian* if there is a cycle that contains every vertex of *G*.
- For every graph G, is T(G) hamiltonian?
 - Can we move through all of the spanning trees of a graph just by switching one edge at a time?

Known Results

- T(G) is hamiltonian for any graph G (Cummins, 1966)
- T(G) is uniformly hamiltonian (Harary & Holtzmann, 1972)
- T(G) is edge-pancyclic and path-full (Alspach & Liu, 1989)
- $\kappa(T(G)) = \kappa'(T(G)) = \delta(T(G))$ (Liu, 1992)
- $\chi(T(G)) \le |E(G)|$ (Estivill-Castro, Noy, & Urrutia, 2000)

Matroid Basis Graphs

Matroid Basis Graphs

- A common neighbor subgraph is the graph induced by two vertices distance two from each other and all of their common neighbors.
- Thm: In a MBG, every common neighbor is either a square, tetrahedron, or octahedron. (Mauer, 1973)
- Thm: Octahedra can't show up in a tree graph, so every common neighbor graph of a tree graph is either a square or a tetrahedron.

Graphs with Cut Vertices

- Let *G* and *H* be graphs and let *G* ⊙ *H* be a graph that identifies a vertex in *G* with a vertex in *H*.
- Nearem: $T(G \odot H) \cong T(G) \square T(H)$.

Symmetry of Tree Graphs

- An *automorphism* of a graph *G* is a permutation of the vertices that respects adjacency. The set of all automorphisms of *G* forms a group under composition, *Aut*(*G*).
- *Aut*(*G*) helps describe the symmetries and structure of *G*.
- The *glory* of a graph G, g(G), is the size of its automorphism group. g(G) = |Aut(G)|.
 - If g(G) is large, G is highly symmetric (glorious).

Aut(T(G))

- g(G) has been large for most of the small graphs studied so far.
- Thm: If *G* is 3-connected, then $Aut(G) \cong Aut(T(G))$.
- Conj: The converse is true as well.
- Conj: If G is 2-connected but not 3-connected, g(T(G)) is either 1, 2, 6, or is divisible by 4.
- Nearem: Aut(G) is a subgroup of Aut(T(G)).
 - $Aut(K_4 e) \cong V_4$ while $Aut(T(K_4 e)) \cong D_8$, the symmetries of the square.
- Conj: g(T(G))/g(G) is 1, 3, or even.

Automorphism Size Examples

Graph G	g(T(G))	g(G)	Notes
$K_4 - e$	8	4	D_8 and V_4
$K_{3,2}$	48	12	$S_4 \times S_2$ and $S_3 \times S_2$
K_5	120	120	Probably S_5 and S_5
$C_6 \ominus C_6$	28800	4	? and V_4
	288	3	? and \mathbb{Z}_3
	12	1	D_{12} and trivial
C_4	24	8	S_4 and D_8

Isomorphic Tree Graphs

- Is it ever the case that $G \ncong H$ but $T(G) \cong T(H)$?
- Thm: If *G* is 3-connected and planar, $T(G) \cong T(G^*)$. Planar duals give isomorphic tree graphs.
 - Halin graphs and polyhedral graphs fit this.

Isomorphic Tree Graphs

- These pairs of graphs are not isomorphic, but their tree graphs are.
- The starting graphs are *isoparic*: they have the same number of vertices and same number of edges but are not isomorphic.

Realizing Tree Graphs

- Given T(G), can we find a graph H such that $T(H) \cong T(G)$?
- Given the number of vertices and edges in a tree graph, can we put a useful bound on the number of vertices or edges in the original graph?

Realizing Tree Graphs

• These two graphs are isoparic and their tree graphs are isoparic (both have 64 vertices and 368 edges).

Deletion/Contraction

- Let *e* be an edge of *G*.
- Nearem: $T(G) \cong T(G e) \cup T(G \cdot e) \cup \text{ additional edges.}$

Deletion/Contraction

Planarity

- Thm: If the both the diamond and the butterfly are forbidden minors, the family of graphs obtained are the pseudoforests.
- Pseudoforest: every connected component is a unicycle.
- Unicycle: a connected graph with exactly one cycle.
- Thm: The tree graphs of the diamond and the butterfly are nonplanar. (Contain K_5 and $K_{3,3}$ minors, respectively.)
- Nearem: T(G) is nonplanar unless $G \cong C_3$, C_4 .

Pseudoforest made of unicycles

Unicycles and Decomposition

- Each spanning tree has n-1 edges. G has m edges. To find the neighbors of a vertex in T(G), add one of the m-(n-1)=m-n+1 "extra" edges to the tree. Exactly one cycle will be formed.
- This unicycle of size c will give rise to a K_c subgraph in T(G).
- Nearem: The edges of T(G) can be decomposed into cliques of size at least three such that each vertex is in exactly m n + 1 cliques.
 - Can be used to predict number of edges in T(G).
 - Is this decomposition unique?

Unicycles and Decomposition

$$m = 5$$

 $n = 4$
 $m - n + 1 = 2$

Degree Bounds

- Let v = m n + 1.
- Thm: $[girth(G) 1][v] \le \delta(T(G))$ $\le \Delta(T(G)) \le [circ(G) - 1][v]$ (Liu, 2002)
- By Vizing's Theorem we then have $[girth(G)-1][v] \le \chi'\big(T(G)\big) \le [circ(G)-1][v]+1$

- Let $\theta_{l,m,n}$ be the graph with two vertices joined by three disjoint paths of edge length l, m, and n.
- Thm: $T(\theta_{l,m,n}) \cong L(K_{l,m,n})$.
- Nearem: This is the only time a tree graph will be a line graph.

$$\theta_{4,2,1}$$

- Let $P_{n,k}$ be the graph where two vertices are joined by n disjoint paths of edge length k.
- Thm: $T(P_{n,k})$ is (n-1)(2k-1)-regular.
 - Any number that is not a power of 2 can be written in this form.
- Conj: $T(P_{n,k})$ is integral (with easily-understood eigenvalues) and vertex transitive.
- $T(P_{n,k})$ could be a new infinite family (with two parameters) of regular integral graphs.

- Bracelets: Take a graph and join together copies of it like a bracelet.
- Conj: If the repeated graph has a regular tree graph, the tree graph of the bracelet will be regular.

- So far cycles, $P_{n,k}$, and bracelets have been the only families that induce regular tree graphs. While $T(P_{n,k})$ seems to be integral, that doesn't seem to hold for bracelets.
- The tree graphs of these families seem to be vertextransitive.
- Conj: If T(G) is regular then it is vertex-transitive.

(Zelinka, 1990)

Characterizing Tree Graphs

• Conj: $H \cong T(G)$ iff it is a matroid basis graph with no induced octahedra and can be decomposed into cliques of size 3 or more, where each vertex is in the same number of cliques.

Further Research

- Can we find good bounds for other graph parameters such as ω and α ?
- Can we find better bounds for χ and Δ ?
- Can tree graphs be characterized in a simple way?
- Does the number of cycles or cycle-types in G affect the regularity or integrality of T(G)? If so, how?
- Are there other families of regular or integral tree graphs?

Thanks!

• Any questions?

 $T(K_{4,2})$