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Gwen’s Game

The Rules:
Tiles are squares with one of two possible colors on each edge.

A player begins by placing any tile on the starting position.

Players take turns placing a tile, side-by-side with (at least one) 
previously played tile.

An edge where two tiles touch must have the same color on 
both tiles.

Tiles must stay within the boundaries of the board.

Game continues until either (a) all tiles have been played; or (b) 
no player can legally play a tile
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Example:

A legal move

Not a legal move



Gwen’s Game

•A full set of tiles for this game will have every possible 
configuration of colorings of their edges using two colors.



Gwen’s Game

•A full set of tiles for this game will have every possible 
configuration of colorings of their edges using two colors.

•Problem:  Decide how many possible tiles will be in a full set. 
[Remember: tiles can be rotated, so you don’t want to count 
the same kind of tile twice.]



Gwen’s Game

•A full set of tiles for this game will have every possible 
configuration of colorings of their edges using two colors.

•Problem:  Decide how many possible tiles will be in a full set. 
[Remember: tiles can be rotated, so you don’t want to count 
the same kind of tile twice.]

•Choose two colored pens and create two full sets of tiles. Each 
player gets a full set of tiles.



Gwen’s Game

•A full set of tiles for this game will have every possible 
configuration of colorings of their edges using two colors.

•Problem:  Decide how many possible tiles will be in a full set. 
[Remember: tiles can be rotated, so you don’t want to count 
the same kind of tile twice.]

•Choose two colored pens and create two full sets of tiles. Each 
player gets a full set of tiles.

•When you’re done, come show me. I’ll give you a game board 
on which to play.
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You found the 6 following possible tiles:

Question: Why don’t we have these two in the set?

Answer: We already have them. If you can rotate a piece to 
make a new one, then you already have it in the set.
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Gwen’s Game

Suppose instead that the game tiles cannot be rotated, so that 
the two tiles below are considered different.

Now how many possible tiles are there in a set? Try to draw 
them out.
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This time you found 16 different tiles.

Counting these was pretty easy:  24 = 16
At each edge, there were 2 possibilities. So going around the 
shape gave us 2*2*2*2 possible ways to color the edges.

So, is there an easy way to count them when rotations were 
allowed? What’s the idea there?
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When we counted the original 6 game pieces, we had to decide 
whether we had two pieces where one could be rotated to make 
the other. The key here was knowing exactly how a square could 
be rotated:  90o or  180o or  270o

Easy idea, but this is where it all happens.
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In order to find the 6 colorings which are different, notice that we 
can think about partitioning this set into subsets of tiles which can 
be rotated into one another.

Now it’s easy to see the 6 distinct tiles – just pick one from each 
circled subset. Tiles in the same subset are called equivalent under 
rotation.
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So, what if we wanted to play with tiles which are not squares, 
but regular pentagons (5-sided)?

1. Suppose we cannot rotate the tiles. How many possible 
tiles are there with two possible colors on each edge?

2*2*2*2*2 = 32 possible tiles

2. Suppose instead that we can rotate tiles. Try to draw the 8 
distinct tiles.
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Partitioning these into subsets which are equivalent under 
rotations shows us the 8 unique tiles.
Just choose one tile from each subset.
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Now for some complications…

1.  What if it’s difficult to determine which subsets are 
equivalent under rotations?

Example: This time, the tiles are regular hexagons (6
sided) whose edges can each be one of three colors.

Before allowing rotations, there are 36 = 729 possible 
colorings. We don’t want to list or draw those!

So, if we can’t list them, it might be hard to determine 
the unique kinds of tiles.

[There are actually 130 of them!]
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Now for some complications…

2.  What if we allowed more than just rotations?

Example: Imagine if our tiles were 6-sided and edges 
could be one of 2 colors. But this time they are colored 
the same on the front and the back, and we can flip them 
over to play them (in addition to rotating them).

So, two tiles are equivalent if you can rotate or flip one to 
get the other.

With rotations only, these would not be equivalent.

But with flips, they are considered equivalent.
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So how do we count distinct colorings when either the set of 
non-rotated (fixed) shapes is too big to list, or when we allow 
tiles to be flipped over?

Enter:  Abstract Algebra!
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When we thought about rotating our squares, we knew that we 
had four options: Leave it alone (rotate 00)

Rotate 90o

Rotate 180o

Rotate 270o

We didn’t specify how many ways we could flip the square over, 
but there were also four:

Flip vertically
Flip horizontally
Flip over a diagonal
Flip over the other diagonal

This set of 8 possible movements of the square is an example of 
what is known as a group. For our purposes, we will think of a 
group as “all the ways you could pick up the shape and put it 
back down again”. Each motion is called a group element.
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This group of motions of the square is changing the colorings of 
the square’s edges. But not every group element changes every 
edge coloring…

Consider our original example of square tiles and two colors:

The 90o rotation doesn’t change 2 of the colorings. Which ones?
The 180o rotation doesn’t change 4 of the colorings. Which ones?
The vertical flip doesn’t change 8 of the colorings. Which ones?



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:

Group element Number of colorings fixed

Running Total:



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:

Group element Number of colorings fixed

0o Rotation All of them = 16

Running Total:  16
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each group element, we get an interesting result:

Group element Number of colorings fixed
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Running Total:  16 + 2 + 4 + 2
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each group element, we get an interesting result:
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If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:

Group element Number of colorings fixed

Horizontal Flip 8

Running Total:  16 + 2 + 4 + 2 + 8 + 8



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:

Group element Number of colorings fixed

Diagonal Flip 4
(over y = x)

Running Total:  16 + 2 + 4 + 2 + 8 + 8 + 4



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:

Group element Number of colorings fixed

Diagonal Flip 4
(over y = -x)

Running Total:  16 + 2 + 4 + 2 + 8 + 8 + 4 + 4



If we make a list of which colorings are not changed (“fixed”) by 
each group element, we get an interesting result:

Group element Number of colorings fixed

Running Total:  16 + 2 + 4 + 2 + 8 + 8 + 4 + 4 = 48
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A famous result in Abstract Algebra says:

The left side of the equation is the number of orbits (number of 
sets of colorings which can be changed into each other by group 
action). Each orbit is a set of colorings which are all equivalent to 
each other by some rotation or flip. So, since each orbit 
represents a unique kind of coloring, the left side says we’re 
counting the number of distinct colorings. 
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On the right side of the equation, we have        which is 1 divided
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A famous result in Abstract Algebra says:

On the right side of the equation, we have        which is 1 divided

by the number of elements in the group. This is multiplied by a 

sum whose terms,         , are the number of colorings fixed by 

each group element.

Notice that we know these numbers:
The group has 8 elements
The sum of colorings fixed by each group element was 48
So, the number of distinct colorings is 

(1/8)*(48) = 6

1 g

g G

X X
G G 

 
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G
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This formula is called Burnside’s Lemma. Essentially, it says that 
the number of distinct colorings (orbits) is the average of the 
sizes of the sets of colorings fixed by group elements.

Some group elements fix a lot of colorings, some only fix a few. 
This says that the number of colorings fixed by each group 
element averages out to the number of distinct colorings.
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hexagons and can have 2 colors on edges, where they can only 
be rotated.
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Important point about using the formula:

You can choose which group of motions, G, you want to allow.*

Example:  Let’s count the number of distinct tiles which are 
hexagons and can have 2 colors on edges, where they can only 
be rotated.

So, our group G is just the ways to rotate a hexagon:

How many rotations are possible?
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Important point about using the formula:

You can choose which group of motions, G, you want to allow.*

Example:  Let’s count the number of distinct tiles which are 
hexagons and can have 2 colors on edges, where they can only 
be rotated.

So, our group G is just the ways to rotate a hexagon:

There are 6 possible rotations.
0o 60o 120o 180o 240o 300o
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Group element Colorings left fixed

0o Rotation

Running Total:
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

0o Rotation All 26 = 64

Running Total:  64
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

60o Rotation

Running Total:  64
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

60o Rotation 2

Running Total:  64 + 2
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

120o Rotation

Running Total:  64 + 2
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

120o Rotation 4

Running Total:  64 + 2 + 4
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

180o Rotation

Running Total:  64 + 2 + 4
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

180o Rotation 8

Running Total:  64 + 2 + 4 + 8
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

240o Rotation

Running Total:  64 + 2 + 4 + 8
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

240o Rotation 4

Running Total:  64 + 2 + 4 + 8 + 4
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

300o Rotation

Running Total:  64 + 2 + 4 + 8 + 4
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

300o Rotation 2

Running Total:  64 + 2 + 4 + 8 + 4 + 2
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

Running Total:  64 + 2 + 4 + 8 + 4 + 2 = 84
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

Running Total:  64 + 2 + 4 + 8 + 4 + 2 = 84

Now, determine the number of distinct tiles under rotation.
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For each rotation, let’s count how many colorings would be left 
fixed (unchanged). Keep a running total.

Group element Colorings left fixed

Running Total:  64 + 2 + 4 + 8 + 4 + 2 = 84

Now, determine the number of distinct tiles under rotation.

By the formula, there are (1/6)*(84) = 14 distinct colorings.
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The number should either go down or stay the same, since 
allowing other motions of the tiles might make some colorings 
equivalent where they used to be distinct.

So, how many flips does a hexagon have?  Answer:  6
You can flip over any of the dotted lines.

We can name the flips by their axis:



How should this number of distinct colorings change if we also 
allowed flips? Would it go up, down, or stay the same?

The number should either go down or stay the same, since 
allowing other motions of the tiles might make some colorings 
equivalent where they used to be distinct.

So, how many flips does a hexagon have?  Answer:  6
You can flip over any of the dotted lines.

We can name the flips by their axis:

F1, F2, F3, F4, F5 and F6

1

2

3

4

5

6



Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.
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Now we want to count the number of colorings left fixed by each 
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counted the number fixed by the rotations, so let’s focus on the 
flips.
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F1

Total: 
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F1 2*2*2*2 = 16

Total: 16
1

2

3

4

5

6



Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F2

Total: 16
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F2 2*2*2 = 8

Total: 16 + 8
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F3

Total: 16 + 8
1

2
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F3 2*2*2*2 = 16

Total: 16 + 8 + 16
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F4

Total: 16 + 8 + 16
1

2
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

F4 2*2*2 = 8

Total: 16 + 8 + 16 + 8
1

2
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.
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of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.
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Total: 16 + 8 + 16 + 8 + 16 + 8 = 72
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

Total: 16 + 8 + 16 + 8 + 16 + 8 = 72

The total fixed by each of the 12 group
elements is 72 + 84 = 156
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Now we want to count the number of colorings left fixed by each 
of the 12 group elements (6 rotations and 6 flips). We already 
counted the number fixed by the rotations, so let’s focus on the 
flips.

Flips Number of colorings left fixed

Total: 16 + 8 + 16 + 8 + 16 + 8 = 72

The total fixed by each of the 12 group
elements is 72 + 84 = 156
So, the number of distinct colorings where
flips and rotations are allowed is:

(1/12)*(156) = 13
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4
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rotation leaves the overall coloring fixed.



Notice that the number of colorings fixed by each group element 
were just the number of colors (2) raised to some exponent?

And the exponent was the number of sides which were moved 
around in a cycle by a group element.

For example, the 120o rotation of the hexagon moved the top 
edge two places clockwise, and moved that edge two more 
places clockwise, and moved that edge up to the top. This forms 
a cycle of three edges that must all be the same color if the 120o

rotation leaves the overall coloring fixed.

That same rotation formed two different cycles of 3 edges which 
must be the same. Each cycle could have been one of two colors, 
so the 120o rotation could fix 22 = 4 different colorings.



Notice that the number of colorings fixed by each group element 
were just the number of colors (2) raised to some exponent?

And the exponent was the number of sides which were moved 
around in a cycle by a group element.

For example, the 120o rotation of the hexagon moved the top 
edge two places clockwise, and moved that edge two more 
places clockwise, and moved that edge up to the top. This forms 
a cycle of three edges that must all be the same color if the 120o

rotation leaves the overall coloring fixed.

That same rotation formed two different cycles of 3 edges which 
must be the same. Each cycle could have been one of two colors, 
so the 120o rotation could fix 22 = 4 different colorings.

Important point: The cycles were the key to counting.
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which is a power function that counts both the number of cycles 
of edges and the size of those cycles.

Let          represent a cycle of length i. The exponent j is 
how many cycles there are of length i.

For our 120 rotation, the cycle index is          because it produced 
two cycles of length 3.
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Each movement of a shape has associated with it a cycle index
which is a power function that counts both the number of cycles 
of edges and the size of those cycles.

Let          represent a cycle of length i. The exponent j is 
how many cycles there are of length i.

For our 120 rotation, the cycle index is          because it produced 
two cycles of length 3.

For the flip F2, the cycle index is           because
It has three cycles of length 2.

j
ix

2
3x

1

2

3

4

5

6

3
2x



Each movement of a shape has associated with it a cycle index
which is a power function that counts both the number of cycles 
of edges and the size of those cycles.

Let          represent a cycle of length i. The exponent j is 
how many cycles there are of length i.

For our 120 rotation, the cycle index is          because it produced 
two cycles of length 3.

For the flip F2, the cycle index is           because
it has three cycles of length 2.

For the flip F1, the cycle index is           
because it has two cycles of length 1 (the top
and bottom edges) and two cycles of length 2.
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If we sum the cycle index for all elements of the group (all 6 
rotations and 6 flips), we obtain the cycle index for the group.



If we sum the cycle index for all elements of the group (all 6 
rotations and 6 flips), we obtain the cycle index for the group.

Here it is for the hexagon:

   6 2 3 2 2 3
1 6 3 2 1 2 22 2 3 3x x x x x x x    
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Here it is for the hexagon:

If we let x = 2, we are counting the sum of the colorings left fixed 
by each group element. So, dividing by the number of elements 
in the group, we get:
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If we sum the cycle index for all elements of the group (all 6 
rotations and 6 flips), we obtain the cycle index for the group.

Here it is for the hexagon:

If we let x = 2, we are counting the sum of the colorings left fixed 
by each group element. So, dividing by the number of elements 
in the group, we get:

Which says that there are 13 distinct hexagon colorings
where rotations and flips are allowed.

   6 2 3 2 2 3
1 6 3 2 1 2 22 2 3 3x x x x x x x    

   6 2 3 2 2 32 2(2) 2(2) (2) 3(2) (2) 3(2)
13

12

    

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Example: How many distinct cubes (3 dimensional) are possible 
which have 1 of 2 possible colors on each face?

By Googling “group of rotations of a cube”, I found there are 24 
elements in that group.

Sparing the details, I create the cycle index below:
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This is actually a pretty great method, particularly when the 
shapes get too big or complicated.

Example: How many distinct cubes (3 dimensional) are possible 
which have 1 of 2 possible colors on each face?

By Googling “group of rotations of a cube”, I found there are 24 
elements in that group.

Sparing the details, I create the cycle index below:

Evaluating for x* = 2, we get 10 distinct colorings of a cube.

 6 2 2 2 3 21
1 1 2 1 4 2 324 3 6 6 8x x x x x x x   
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Now, knowing how many total colorings is great, but it doesn’t 
tell you how to go about building them.

How many cubes will we need to build with, say, 4 blue faces and 
2 white faces? Our formula wasn’t specific enough to count that.

Enter:  The Pattern Inventory

The pattern inventory is a generating function created from the 
cycle index.

Recall: A generating function is a power series whose coefficients 
encode a sequence.



Examples of generating functions:

The sequence an = 1, 1, 1, 1, 1, … is given by the power series

2 3

0

1
1 ...

1
n

n

x x x x
x





     






Examples of generating functions:

The sequence an = 1, 1, 1, 1, 1, … is given by the power series

The sequence bn = 1, 4, 9, 16, … is given by the power series
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n
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



     




2 2 3 4

3
0

( 1)
4 9 16 ...

(1 )
n

n

x x
n x x x x x

x






     






The pattern inventory (also called Polya’s Enumeration Formula)

For 2-colorings of the edges of an object, say black and white:

In the cycle index, make the substitution xj = bj + wj, and expand 
the polynomial. The coefficient of wmbn will count the number of 
distinct colorings with m white edges and n black edges.



The pattern inventory (also called Polya’s Enumeration Formula)

For 2-colorings of the edges of an object, say black and white:

In the cycle index, make the substitution xj = bj + wj, and expand 
the polynomial. The coefficient of wmbn will count the number of 
distinct colorings with m white edges and n black edges.

More generally, for p-colorings, make the substitution 
xj = c1

j + c2
j + c3

j + … + cp
j in the cycle index and expand the 

polynomial.
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Example: Compute the pattern inventory for the edge colorings 
of a hexagon when 2 colors were colored and the group was all 
rotations and flips.
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The pattern inventory (also called Polya’s Enumeration Formula)

Example: Compute the pattern inventory for the edge colorings 
of a hexagon when 2 colors were colored and the group was all 
rotations and flips.

Our cycle index was:

Setting xj = bj + wj, we have:
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The pattern inventory (also called Polya’s Enumeration Formula)

Example: Compute the pattern inventory for the edge colorings 
of a hexagon when 2 colors were colored and the group was all 
rotations and flips.

Our cycle index was:

Setting xj = bj + wj, we have:

What does this term tell us?
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The pattern inventory (also called Polya’s Enumeration Formula)

Example: Compute the pattern inventory for the edge colorings 
of a hexagon when 2 colors were colored and the group was all 
rotations and flips.

Our cycle index was:

Setting xj = bj + wj, we have:

What does this term tell us?
How can we see the total number of distinct colorings?
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The pattern inventory (also called Polya’s Enumeration Formula)

Example: Compute the pattern inventory for the edge colorings 
of a hexagon when 2 colors were colored and the group was all 
rotations and flips.

Our cycle index was:

Setting xj = bj + wj, we have:

What does this term tell us?
How can we see the total number of distinct colorings? 13

    6 2 3 2 2 31
1 6 3 2 1 2 212 2 2 3 3x x x x x x x    

   6 6 6 3 3 2 2 2 3 2 2 2 2 2 2 3( ) 2( ) 2( ) ( ) 3( ) ( ) 3( )

12

b w b w b w b w b w b w b w           

6 5 2 4 3 3 4 2 5 61 1 3 3 3 1 1w bw b w b w b w b w b      



The pattern inventory (also called Polya’s Enumeration Formula)

Example: Same problem, but this time there are 3 possible colors 
– black, white and red

Our cycle index was:

Now we set xj = bj + wj + rj, giving us:
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The pattern inventory (also called Polya’s Enumeration Formula)

Example: Same problem, but this time there are 3 possible colors 
– black, white and red

Our cycle index was:

Now we set xj = bj + wj + rj, giving us:
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The pattern inventory (also called Polya’s Enumeration Formula)

Example: Same problem, but this time there are 3 possible colors 
– black, white and red

Our cycle index was:

Now we set xj = bj + wj + rj, giving us:

Again, what does this term tell us?

    6 2 3 2 2 31
1 6 3 2 1 2 212 2 2 3 3x x x x x x x    



6 5 4 2 2

3 3 2 2 3

2 4 3 2 2 3 4

5 4 2 3 3 2 4 5

6 5 2 4 3 3 4 2 5 6

( ) 3 ( )

3 ( 2 2 )

(3 6 11 6 3 )

( 3 6 6 3 )

3 3 3

r r w b r w bw b

r w bw b w b

r w bw b w b w b

r w bw b w b w b w b

w bw b w b w b w b w b

      

    

     

      

      

The pattern inventory (also called Polya’s Enumeration Formula)

Example: Same problem, but this time there are 3 possible colors 
– black, white and red

Our cycle index was:

Now we set xj = bj + wj + rj, giving us:

Does this term look familiar?

    6 2 3 2 2 31
1 6 3 2 1 2 212 2 2 3 3x x x x x x x    



The pattern inventory (also called Polya’s Enumeration Formula)

Homework: 

1. Consider a necklace with 7 beads. The necklace may be 
rotated but not flipped, and each bead may be one of 2 
colors.

2. How many necklaces with 7 beads can be made with 3 
colors?

3. Use Polya’s Enumeration Formula to determine how many 
necklaces with 7 beads and the colors red, orange, yellow 
can be made which have 3 red, 2 orange, and 2 yellow beads.
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