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Bootstrap Percolation
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Graphs
A graph, G = (V ,E), is a set of vertices, V , along with a set of
undirected edges, E ⊂

(V
2

)
.

Examples:
Square lattice (finite): V = [n]2 = {1,2, . . . ,n}2,
E = {(u, v) ∈

(V
2

)
: ‖u − v‖1 = 1}

Hypercube: V = {0,1}n, E = {(u, v) ∈
(V

2

)
: ‖u − v‖1 = 1}.
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Bootstrap Percolation

Fix a ‘threshold’ θ ∈ Z+.

Let N (v) be the graph neighborhood of v ∈ V .

For p = p(n) ∈ (0,1), let {ω(v)}v∈V be i.i.d. Bernoulli(p).

Bootstrap percolation is the increasing sequence of configurations in
{0,1}V :

ω0 = ω

ωj+1(v) =

{
1 if ωj(v) = 1 or

∑
w∼v ωj(w) ≥ θ

0 else

for k ≥ 1, and ω∞ is the pointwise limit.

We say that ω0 spans F ⊂ V if ω∞|F ≡ 1, and spans G if ω∞ ≡ 1.
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Bootstrap Percolation - Example

On the (finite) 2-dimensional nearest-neighbor lattice with θ = 2.
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Bootstrap Percolation - History (Infinite Graphs)

Developed by Chalupa, Leith & Reich (1979) as a simple model of
nucleation and metastability.

They proposed the model on the “Bethe lattice”, aka the infinite
(d + 1)-regular tree.

In the infinite graph setting,

pc = pc(G, θ) := inf{p : Pp(ω∞ ≡ 1) > 0}.

For transitive graphs (e.g., trees, lattices),

pc = sup{p : Pp(ω∞ ≡ 1) < 1}.

6



Bootstrap Percolation - History (Infinite Graphs)

Consider
(d + 1) = (3 + 1)-regular tree
and θ = 2.

Pp(ω∞ 6≡ 1) =

Pp(∃ a 3-regular subtree
with no open vertices)

= 1
⇐⇒ Pp(empty binary tree
rooted at v within ternary
subtree rooted at v) > 0.
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Bootstrap Percolation - History (Infinite Graphs)
Pp(empty binary tree
rooted at v within ternary
subtree rooted at v)
=:y= y(p).

y =
3∑

k=2

(
3
k

)
[(1− p)y ]k [1− (1− p)y ]3−k

=: f (y ,p).

0 is always a solution, but can show that
y is the largest solution in [0,1].

pc = inf{p : y = f (y ,p) has only
one root at y = 0}

=
1
9
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Bootstrap Percolation - History (Infinite Graphs)

Most interest is in lattices, such as Zd .

First rigorous result is due to van Enter (1987) for d = 2, extended to
d ≥ 2 by Schonmann (1992)

Theorem (Nearest-neighbor lattice Zd )
If θ ≤ d, then pc = 0. If θ > d, then pc = 1.

Interesting cases are 2 ≤ θ ≤ d .
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Bootstrap Percolation - History (Infinite Graphs)
When d = θ = 2,

Pp(ω∞ ≡ 1) ≥ Pp(GOOD configuration exists).

Pp(GOOD configuration at 0) ≥

[ ∞∏
k=1

1− (1− p)k

]4

10



Bootstrap Percolation - History (Infinite Graphs)
When d = θ = 2,

Pp(ω∞ ≡ 1) ≥ Pp(GOOD configuration exists).

Pp(GOOD configuration at 0) ≥

[ ∞∏
k=1

1− (1− p)k

]4

10



Bootstrap Percolation - History (Infinite Graphs)

Pp(GOOD configuration at 0) ≥

[ ∞∏
k=1

1− (1− p)k

]4

=

[
exp

( ∞∑
k=1

log(1− (1− p)k )

)]4

≥

[
exp

(
1
p

∞∑
k=1

log
(

1− e−kp
)

p

)]4

≥ exp
(

4
p

∫ ∞
0

log
(
1− e−x)dx

)
= exp

(
−4

p
· π

2

6

)
> 0.
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Bootstrap Percolation - History (Finite Graphs)

For a finite box of side length n, how large does p need to be?

In finite graphs, the critical value pc = pc(n) is defined as

Ppc (ω∞ ≡ 1) = 1/2.
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Bootstrap Percolation - History (Finite Graphs)

Scaling for pc :

Lattice cubes: V = [n]d ⊂ Zd , nearest neighbor edges.
θ = 2: (log n)−(d−1) [Aizenman & Lebowitz, 1988].

3 ≤ θ ≤ d : (logθ−1 n)−(d−θ+1) [Cerf & Cirillo, 1999;
Cerf & Manzo, 2002].

Hypercube: V = {0,1}n, nearest neighbor edges.

θ = 2: n−22−2
√

n [Balogh & Bollobás, 2006]

θ = dn/2e: 1
2 −

1
2

√
log n

n [Balogh, Bollobás, & Morris, 2009]

These results suggest existence of an order parameter: a function of n
and p whose size determines whether Pp(ω∞ ≡ 1) is near 0 or 1.
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Bootstrap Percolation - History (Finite Graphs)

Does Pp(ω∞ ≡ 1) exhibit a sharp jump from 0 to 1 as the order
parameter increases?

If so, does the location of the sharp jump converge?
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Bootstrap Percolation - History (Finite Graphs)

For V = [n]2 and θ = 2: pc ∼ π2

18 log n [Holroyd, 2003]

For V = [n]d and 2 ≤ θ ≤ d , sharp threshold established by
[Balogh, Bollobás, Duminil-Copin, & Morris, 2012]

For V = [n]2, θ = 2, and the ‘cross’ neighborhood (k − 1 nearest
points in each of 4 directions): pc ∼ π2

3k(k+1) log n [Holroyd,
Liggett & Romik, 2004]
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The Hamming Graph

The Hamming graph with side length n and dimension d is the graph
with the following vertex set, V , and edge set, E .

V = {1,2, . . . ,n}d

E = {(x , y) ∈ V × V : d(x , y) = 1} ,

where d(x , y) is the Hamming distance between x and y (number of
coordinates at which they differ). Denote this graph by H = H(d ,n)
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Main Questions

Fix d and θ. For which values of p = p(n) does Pp(ω∞ ≡ 1)→ 1?
For which values of p does Pp(ω∞ ≡ 1)→ 0?

Does the probability of spanning H converge to a nontrivial limit in
some regime? If so, what is the limit?

17



Test case: θ = 2, d = 2

When d = 2, two (non-collinear) open vertices are necessary and
sufficient for spanning.

If p = an−2 then |ω0| =⇒ Poisson(a)

This implies Pp(ω∞ ≡ 1)→ 1− (1 + a)e−a.
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Case: d = 2, θ ≥ 3

Theorem (Gravner, Hoffman, Pfeiffer, S. (2014))

Let k ≥ 2 and p = a · n−(k+1)/k .
If θ = 2k − 1, then Pp(ω∞ ≡ 1)→ 1− exp(−2ak/k !).

If θ = 2k, then Pp(ω∞ ≡ 1)→
[
1− exp(−ak/k !)

]2
.
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Case: d = 2, θ ≥ 3

“Proof” for θ = 2k − 1:

k

k-1

. . 
.

k-1

k-1
k-1

k-1
X (k-1)

One line with k open vertices is likely to span. The number of lines
with k open vertices converges to a Poisson(2ak/k !) r.v.
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Case: d = 3, θ = 3
When p = an−2 these configurations contribute to {ω0 spans H}.
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Case: d = 3, θ = 3

Theorem (Gravner, Hoffman, Pfeiffer, S. (2014))

If p = an−2 then as n→∞

Pp(ω∞ ≡ 1)→ 1− e−a3−(3/2)a2(1−e−2a)×[
3
2

a2
((

e−a + ae−3a
)2
− e−2a

)
e−a2e−2a

+ ea3e−3a
]
.
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Critical exponents for other d and θ

When p � n−α it is easy to show:
If α > 1 + d

θ then ω0 will not span H w.h.p.
(All vertices have < θ open neighbors.)

If α ≤ 1 then ω0 will span H w.h.p.
(Each vertex has ≥ θ open neighbors with positive probability.)
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Critical exponents for other d and θ

Recall pc = pc(d , θ, n) is such that:

Ppc (ω∞ ≡ 1) = 1/2.

Theorem: Critical exponents for large θ

For fixed d ≥ 3, θ sufficiently large depending on d , and n sufficiently
large depending on d , θ,

1 +
2
θ

+

√
7

θ3/2 ≤
− log pc

log n
≤ 1 +

2
θ

+
4(d2 + 1)

θ3/2 .
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Bounds on critical exponents

For d = 3, we have matching bounds for some small values of θ

θ 2 3 4 5 6 7 8 9 10 11 12

Lower Bound 5
2 2 7

4
11
7

3
2

7
5

19
14

17
13

23
18

5
4

27
22

Upper Bound 5
2 2 7

4
11
7

3
2

7
5

15
11

17
13

9
7

5
4

21
17

Lower bound is via dimension reduction.
Upper bound is the minimum of 1 + 3

θ and either 1 + 8
3θ−1 if θ is

odd or 8
3θ−2 if θ is even.
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Bounds on critical exponents
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Jigsaw Percolation

Joint work with: Charles Brummitt, Shirshendu Chatterjee, Partha Dey, Janko
Gravner
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Motivation

DARPA challenge: UCSD team
used crowdsourcing to piece
together shredded paper.

Polymath Project: Tim Gowers’
experiment with “massively
collaborative mathematics.”

How might people cooperatively
combine their individual ideas to
solve a problem?
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People and Ideas (Puzzle Pieces)

A new dynamic on multitype networks
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People and Ideas (Puzzle Pieces)

If two people know each
other...

and have compatible
ideas...
then they merge their
ideas.

Generally, if two groups
with merged ideas know
each other and have
compatible ideas...
then they merge their ideas.
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Jigsaw Percolation Model

Solved the puzzle!

Each person has one unique piece of the puzzle.

People Graph of who knows whom:
(V ,Epeople).

Puzzle Graph of compatible ideas:

(V ,Epuzzle).

Successively merge groups that know one another and have
compatible puzzle pieces.
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Jigsaw Percolation Model

People Graph: Erdős-Rényi random graph (V ,Epeople) ∼ G(n,p).
Puzzle Graphs: Connected graphs on n vertices.

How connected must the people graph be to solve the puzzle?
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Results

Theorem (Brummitt, Chatterjee, Dey, S. (2014))

For any connected puzzle graph if p = λ/ log n with λ > π2/6, then as
n→∞

Pp(Solve)→ 1.

Theorem (Gravner, S.)
Let D be the maximum puzzle degree. If p = µ/(D log n) with
µ < 2e−4, then

Pp(Solve)→ 0.

Corollary: For puzzles of bounded degree, pc = Θ(1/ log n).
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Proofs (Main Ideas)
Upper Bound: pc ≤ π2

6 log n

Sufficient condition:
j is people-adjacent to {1,2, . . . , j − 1}
for all j . puzzle

people

1 2
3

4 j

1
j-1

2

 j

Lower Bound: pc ≥ C
D log n

Necessary condition:
For any k there is a puzzle-connected set
of size ∈ [k ,2k ] that is internally solved.
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General Results: Improved Upper Bound

Matching order bounds for some famous D-regular transitive graphs:
pc � 1/(D log N).

Theorem (Gravner, S.)
Let pc = inf{p : Pp(Solve) > 1/2}.

The d-dimensional torus Zd
n has pc = Θ(1/(d2 log n)).

The 2-dimensional torus Z2
n with spread-out edges, x ↔ y if

‖x − y‖∞ ≤ r , has pc = Θ(1/(r2 log n)).

The hypercube {0,1}n has pc = Θ(1/n2).

The Hamming graph Zd
n with edges x ↔ y if ‖x − y‖H = 1 has

pc = Θ(1/(d2n log n)).
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pc = Θ(1/(d2n log n)).
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General Results: Improved Upper Bound

Matching order bounds for some famous D-regular transitive graphs:
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Counterexamples

From this one might conjecture that pc � 1/(D log N) for transitive
D-regular graphs.

Simple counterexample: Gpuz = Kn, so D ∼ n.
If 1/(n log n)� p � log n/n, then Gppl is disconnected whp, so
Pp(Solve)→ 0.

Nontrivial counterexample: Gpuz = Kn × Z(log n)3 , where Zm is the
cycle of m vertices, so D ∼ n, N = n(log n)3.
If p = µ/(n log n) with µ > 0, then Gppl is connected whp, but
Pp(Solve)→ 0.
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Model Generalization

Fix thresholds: θ, τ, σ ≥ 1.
links(v ,A) = # Puzzle edges between v and A ⊂ V .
collaborators(v ,A) = # People edges between v and A ⊂ V .

New Rules
Merge two clusters, W1 and W2, if at least one of the following hold:
(1) there are doubly connected vertices v1 ∈W1 and v2 ∈W2;
(2) there is a vertex v1 ∈W1 with collaborators(v1,W2) ≥ σ and

links(v1,W2) ≥ τ .
(3) there is a vertex v1 ∈W1 with links(v1,W2) ≥ θ;

If τ = σ = 1 and θ =∞, this gives the Adjacent-Edge jigsaw
percolation.

Open question: Is Adjacent-Edge jigsaw percolation distinguishable
from basic jigsaw percolation?
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Model Generalization

Adjacent-Edge JP on 10× 10 torus, with p = 0.11, at times
t = 0, . . . ,5.
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Sharp Transitions for the Ring Puzzle

Adjacent-Edge JP on Zn with n = 1000, averaged over 200 trials.
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Sharp Transitions for the Ring Puzzle

Theorem: Threshold for solving the ring.
Let σ ≥ 1, τ = 1, θ =∞ and

λc := −
∫ ∞

0
logP(Poisson(x) ≥ σ) dx .

If Gpuz = Zn then
pc log n→ λc ,

with sharp transition.

Theorem: Time to final configuration.
If p ∼ λ/ log n and Tf is the first time the final partition is reached, then,
in probability {

lim supn→∞
Tf

log n <∞ if λ < λc

limn→∞
log Tf
log n = λc

λ if λ > λc
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Jigsaw Percolation on Z2
n

n = 400.

Adjacent-Edge BP at t = 31
with p = 0.021.

σ = τ = 1 and θ = 2. At t = 31
with p = 0.009.
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Jigsaw Percolation on Z2
n

n = 400.

σ = 1, τ = 2 and θ =∞. At
t = 91 with p = 0.11.
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Jigsaw Percolation on Z2
n

Let τ = σ = 1 and θ =∞ (Adjacent-Edge JP).

Theorem: 2d-torus bounds
For all large enough n,

0.0388
log n

< pc <
0.303
log n

.

Proof Ideas:
Lower Bound: Number of connected subsets of size k containing
the origin is ≤ (4.65)k [Finch ’99].
Upper Bound: Internally solve triangles and psite

c < 0.6795
[Wierman ’95].
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Jigsaw Percolation on Z2
n

Let τ = 1, σ ≥ 1 and θ = 2.

Theorem: 2d-torus jigsaw-bootstrap percolation
Let g(x) = − log(1− e−x ) and define

λc =

∫ ∞
0

g
(

x2σ+1

σ!

)
dx =

(σ!)1/(2σ+1)Γ( 1
2σ+1)ζ(2σ+2

2σ+1)

(2σ + 1)
.

Then as n→∞,

pc(log n)2+ 1
σ → λ

2+ 1
σ

c ,

with sharp transition.

Note that σ affects the order of pc !
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Jigsaw Percolation on Z2
n

Let τ = 2, σ ≥ 1 and θ ≥ 2.

Theorem: 2d-torus restricted jigsaw percolation
If θ > 2, then

π2

6
≤ lim inf

n→∞
pc log n

≤ lim sup
n→∞

pc log n ≤ π2

6
− 1

2

∫ ∞
0

logP(Poisson(x) ≥ σ) dx .

If θ = 2, then

pc log n→ π2

6
with sharp transition.

Note that pc does not depend on σ when θ = 2.
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Open problems

For Adjacent-Edge BP on Z2
n, can a sharp transition be proved?

For τ = 2, θ > 2?

Thresholds for other puzzle graphs? (Zd
n , random regular graph,

hypercube, Hamming graph, etc.)

Rates of convergence?
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Thank you!
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