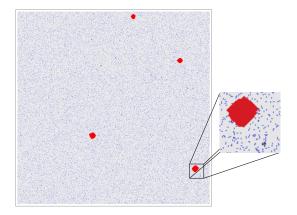
Deterministic percolation from random seeds

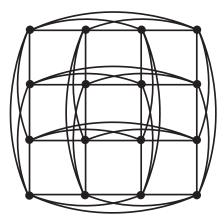


David Sivakoff Ohio State University

November 17, 2014

1

Bootstrap Percolation



Graphs

A graph, G = (V, E), is a set of vertices, V, along with a set of undirected edges, $E \subset {V \choose 2}$.

Examples:

• Square lattice (finite): $V = [n]^2 = \{1, 2, ..., n\}^2$, $E = \{(u, v) \in \binom{V}{2} : ||u - v||_1 = 1\}$

• Hypercube: $V = \{0, 1\}^n$, $E = \{(u, v) \in \binom{V}{2} : \|u - v\|_1 = 1\}$.

Bootstrap Percolation

Fix a 'threshold' $\theta \in \mathbb{Z}_+$.

Let $\mathcal{N}(v)$ be the graph neighborhood of $v \in V$.

For $p = p(n) \in (0, 1)$, let $\{\omega(v)\}_{v \in V}$ be i.i.d. Bernoulli(p).

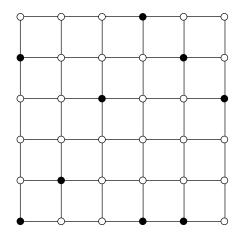
Bootstrap percolation is the increasing sequence of configurations in $\{0, 1\}^{V}$:

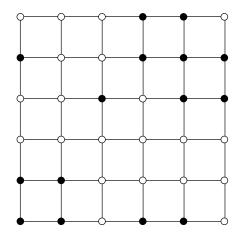
$$\omega_0 = \omega$$

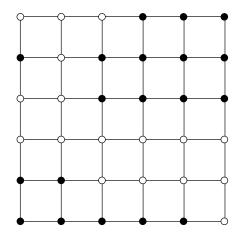
 $\omega_{j+1}(v) = \begin{cases} 1 & \text{if } \omega_j(v) = 1 \text{ or } \sum_{w \sim v} \omega_j(w) \ge \theta \\ 0 & \text{else} \end{cases}$

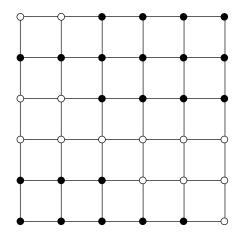
for $k \ge 1$, and ω_{∞} is the pointwise limit.

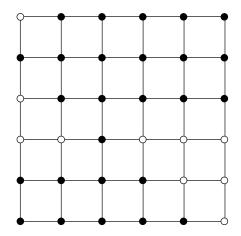
We say that ω_0 spans $F \subset V$ if $\omega_{\infty}|_F \equiv 1$, and spans G if $\omega_{\infty} \equiv 1$.











Developed by Chalupa, Leith & Reich (1979) as a simple model of nucleation and metastability.

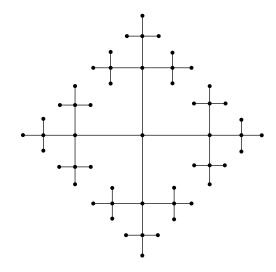
They proposed the model on the "Bethe lattice", aka the infinite (d + 1)-regular tree.

In the infinite graph setting,

$$p_c = p_c(G, \theta) := \inf\{p : \mathbb{P}_p(\omega_\infty \equiv 1) > 0\}.$$

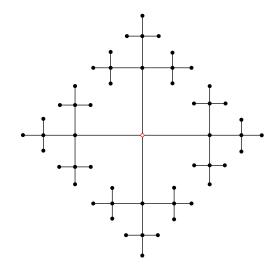
For transitive graphs (e.g., trees, lattices),

$$p_c = \sup\{p : \mathbb{P}_p(\omega_\infty \equiv 1) < 1\}.$$



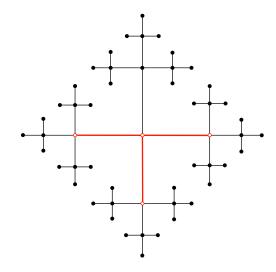
Consider (d+1) = (3+1)-regular tree and $\theta = 2$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - の Q ()



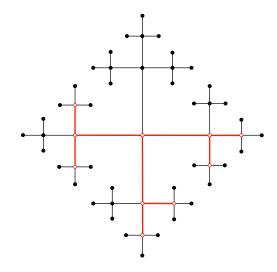
Consider (d+1) = (3+1)-regular tree and $\theta = 2$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ●



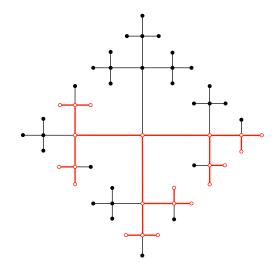
Consider (d+1) = (3+1)-regular tree and $\theta = 2$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - の Q ()



Consider (d+1) = (3+1)-regular tree and $\theta = 2$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - の Q ()

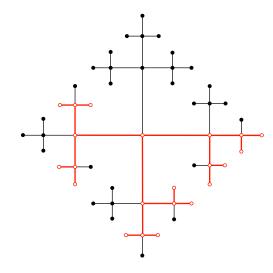


Consider (d+1) = (3+1)-regular tree and $\theta = 2$.

$$\mathbb{P}_{p}(\omega_{\infty} \not\equiv \mathbf{1}) =$$

 $\mathbb{P}_{p}(\exists a 3\text{-regular subtree})$

with no open vertices)



Consider (d+1) = (3+1)-regular tree and $\theta = 2$.

$$\mathbb{P}_{p}(\omega_{\infty} \not\equiv 1) =$$

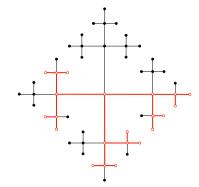
 $\mathbb{P}_{p}(\exists a 3 \text{-regular subtree})$ with no open vertices)

= 1 $\iff \mathbb{P}_{\rho}(\text{empty binary tree} \text{ rooted at } v \text{ within ternary}$ subtree rooted at v > 0.

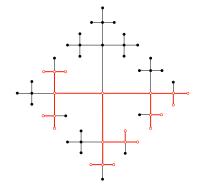
8

 $\mathbb{P}_p(\text{empty binary tree})$ rooted at *v* within ternary subtree rooted at *v*) =: y = y(p).

< 17 ▶



 $\mathbb{P}_{p}(\text{empty binary tree})$ rooted at *v* within ternary subtree rooted at *v*) $=: \mathbf{y} = \mathbf{y}(p).$



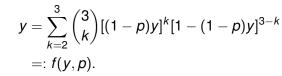
$$y = \sum_{k=2}^{3} {3 \choose k} [(1-p)y]^{k} [1-(1-p)y]^{3-k}$$

=: f(y,p).

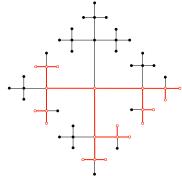
< A >

Ξ.

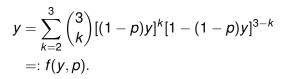
 $\mathbb{P}_{p}(\text{empty binary tree})$ rooted at *v* within ternary subtree rooted at *v*) =: y = y(p).



0 is always a solution, but can show that y is the largest solution in [0, 1].

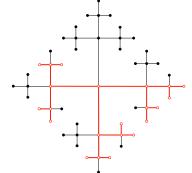


 $\mathbb{P}_{p}(\text{empty binary tree})$ rooted at *v* within ternary subtree rooted at *v*) =: y = y(p).



0 is always a solution, but can show that y is the largest solution in [0, 1].

$$p_c = \inf\{p : y = f(y, p) \text{ has only} \\ \text{one root at } y = 0\} \\ = \frac{1}{9}$$



Most interest is in lattices, such as \mathbb{Z}^d .

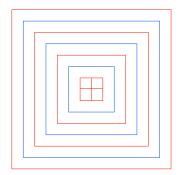
First rigorous result is due to van Enter (1987) for d = 2, extended to $d \ge 2$ by Schonmann (1992)

Theorem (Nearest-neighbor lattice \mathbb{Z}^d) If $\theta \leq d$, then $p_c = 0$. If $\theta > d$, then $p_c = 1$.

Interesting cases are $2 \le \theta \le d$.

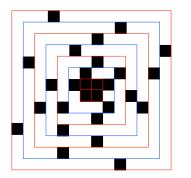
Bootstrap Percolation - History (Infinite Graphs) When $d = \theta = 2$,

 $\mathbb{P}_{p}(\omega_{\infty} \equiv 1) \geq \mathbb{P}_{p}(\text{GOOD configuration exists}).$



Bootstrap Percolation - History (Infinite Graphs) When $d = \theta = 2$,

 $\mathbb{P}_{p}(\omega_{\infty} \equiv 1) \geq \mathbb{P}_{p}(\text{GOOD configuration exists}).$



$$\mathbb{P}_{\rho}(\text{GOOD configuration at } 0) \ge \left[\prod_{k=1}^{\infty} 1 - (1-\rho)^k\right]^4$$

3

 $\mathbb{P}_{p}(\text{GOOD configuration at } 0) \geq \left[\prod_{k=1}^{\infty} 1 - (1-p)^{k}\right]^{\frac{1}{2}}$ $=\left[\exp\left(\sum_{k=1}^{\infty}\log(1-(1-p)^k)\right)\right]^4$ $\geq \left[\exp\left(\frac{1}{\rho}\sum_{k=1}^{\infty}\log\left(1-e^{-k\rho}
ight)
ho
ight)
ight]^{2}$ $\geq \exp\left(rac{4}{arrho}\int_{0}^{\infty}\log\left(1-e^{-x}
ight)dx
ight)$ $=\exp\left(-\frac{4}{p}\cdot\frac{\pi^2}{6}\right)$ > 0.

11

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

For a finite box of side length *n*, how large does *p* need to be?

In finite graphs, the critical value $p_c = p_c(n)$ is defined as

$$\mathbb{P}_{p_c}(\omega_{\infty} \equiv 1) = 1/2.$$

◆□ → ◆□ → ▲目 → ▲目 → ◆□ →

Scaling for p_c :

Lattice cubes: $V = [n]^d \subset \mathbb{Z}^d$, nearest neighbor edges.

• $\theta = 2$: (log *n*)^{-(*d*-1)} [Aizenman & Lebowitz, 1988].

Hypercube: $V = \{0, 1\}^n$, nearest neighbor edges.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Scaling for p_c :

Lattice cubes: $V = [n]^d \subset \mathbb{Z}^d$, nearest neighbor edges.

• $\theta = 2$: $(\log n)^{-(d-1)}$ [Aizenman & Lebowitz, 1988]. • $3 \le \theta \le d$: $(\log^{\theta-1} n)^{-(d-\theta+1)}$ [Cerf & Cirillo, 1999; Cerf & Manzo, 2002].

Hypercube: $V = \{0, 1\}^n$, nearest neighbor edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scaling for p_c :

Lattice cubes: $V = [n]^d \subset \mathbb{Z}^d$, nearest neighbor edges.

• $\theta = 2$: $(\log n)^{-(d-1)}$ [Aizenman & Lebowitz, 1988]. • $3 \le \theta \le d$: $(\log^{\theta-1} n)^{-(d-\theta+1)}$ [Cerf & Cirillo, 1999; Cerf & Manzo, 2002].

Hypercube: $V = \{0, 1\}^n$, nearest neighbor edges.

• $\theta = 2$: $n^{-2}2^{-2\sqrt{n}}$ [Balogh & Bollobás, 2006]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scaling for p_c :

Lattice cubes: $V = [n]^d \subset \mathbb{Z}^d$, nearest neighbor edges.

• $\theta = 2$: $(\log n)^{-(d-1)}$ [Aizenman & Lebowitz, 1988]. • $3 \le \theta \le d$: $(\log^{\theta-1} n)^{-(d-\theta+1)}$ [Cerf & Cirillo, 1999; Cerf & Manzo, 2002].

Hypercube: $V = \{0, 1\}^n$, nearest neighbor edges.

• $\theta = 2$: $n^{-2}2^{-2\sqrt{n}}$ [Balogh & Bollobás, 2006] • $\theta = \lceil n/2 \rceil$: $\frac{1}{2} - \frac{1}{2}\sqrt{\frac{\log n}{n}}$ [Balogh, Bollobás, & Morris, 2009]

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Scaling for p_c :

Lattice cubes: $V = [n]^d \subset \mathbb{Z}^d$, nearest neighbor edges.

• $\theta = 2$: $(\log n)^{-(d-1)}$ [Aizenman & Lebowitz, 1988]. • $3 \le \theta \le d$: $(\log^{\theta-1} n)^{-(d-\theta+1)}$ [Cerf & Cirillo, 1999; Cerf & Manzo, 2002].

Hypercube: $V = \{0, 1\}^n$, nearest neighbor edges.

• $\theta = 2$: $n^{-2}2^{-2\sqrt{n}}$ [Balogh & Bollobás, 2006] • $\theta = \lceil n/2 \rceil$: $\frac{1}{2} - \frac{1}{2}\sqrt{\frac{\log n}{n}}$ [Balogh, Bollobás, & Morris, 2009]

These results suggest existence of an *order parameter:* a function of *n* and *p* whose size determines whether $\mathbb{P}_p(\omega_{\infty} \equiv 1)$ is near 0 or 1.

Does $\mathbb{P}_{p}(\omega_{\infty} \equiv 1)$ exhibit a sharp jump from 0 to 1 as the order parameter increases?

If so, does the location of the sharp jump converge?

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

• For $V = [n]^2$ and $\theta = 2$: $p_c \sim \frac{\pi^2}{18 \log n}$ [Holroyd, 2003]

• For
$$V = [n]^2$$
 and $\theta = 2$: $p_c \sim \frac{\pi^2}{18 \log n}$ [Holroyd, 2003]

• For $V = [n]^d$ and $2 \le \theta \le d$, sharp threshold established by [Balogh, Bollobás, Duminil-Copin, & Morris, 2012]

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• For
$$V = [n]^2$$
 and $\theta = 2$: $p_c \sim \frac{\pi^2}{18 \log n}$ [Holroyd, 2003]

• For $V = [n]^d$ and $2 \le \theta \le d$, sharp threshold established by [Balogh, Bollobás, Duminil-Copin, & Morris, 2012]

• For $V = [n]^2$, $\theta = 2$, and the 'cross' neighborhood (k - 1 nearest points in each of 4 directions): $p_c \sim \frac{\pi^2}{3k(k+1)\log n}$ [Holroyd, Liggett & Romik, 2004]

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - わへで

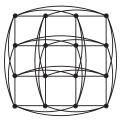
The Hamming Graph

The Hamming graph with side length n and dimension d is the graph with the following vertex set, V, and edge set, E.

$$V = \{1, 2, ..., n\}^d$$

$$E = \{(x, y) \in V \times V : d(x, y) = 1\},$$

where d(x, y) is the Hamming distance between x and y (number of coordinates at which they differ). Denote this graph by H = H(d, n)

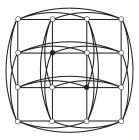


Main Questions

• Fix *d* and θ . For which values of p = p(n) does $\mathbb{P}_p(\omega_{\infty} \equiv 1) \rightarrow 1$? For which values of *p* does $\mathbb{P}_p(\omega_{\infty} \equiv 1) \rightarrow 0$?

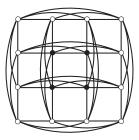
• Does the probability of spanning *H* converge to a nontrivial limit in some regime? If so, what is the limit?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

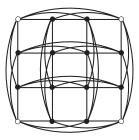


When d = 2, two (non-collinear) open vertices are necessary and sufficient for spanning.

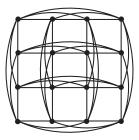
◆ロ > ◆母 > ◆臣 > ◆臣 > ◆臣 - のへぐ



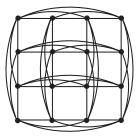
When d = 2, two (non-collinear) open vertices are necessary and sufficient for spanning.



When d = 2, two (non-collinear) open vertices are necessary and sufficient for spanning.



When d = 2, two (non-collinear) open vertices are necessary and sufficient for spanning.



When d = 2, two (non-collinear) open vertices are necessary and sufficient for spanning.

If $p = an^{-2}$ then $|\omega_0| \implies \text{Poisson}(a)$

This implies $\mathbb{P}_{\rho}(\omega_{\infty} \equiv 1) \rightarrow 1 - (1 + a)e^{-a}$.

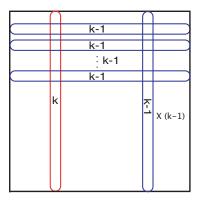
◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Case: $d = 2, \theta \ge 3$

Theorem (Gravner, Hoffman, Pfeiffer, S. (2014)) Let $k \ge 2$ and $p = a \cdot n^{-(k+1)/k}$. • If $\theta = 2k - 1$, then $\mathbb{P}_p(\omega_{\infty} \equiv 1) \rightarrow 1 - \exp(-2a^k/k!)$. • If $\theta = 2k$, then $\mathbb{P}_p(\omega_{\infty} \equiv 1) \rightarrow [1 - \exp(-a^k/k!)]^2$.

Case:
$$d = 2, \theta \ge 3$$

"Proof" for $\theta = 2k - 1$:

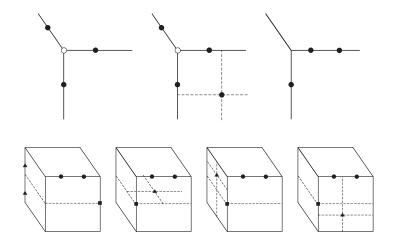


One line with *k* open vertices is likely to span. The number of lines with *k* open vertices converges to a Poisson $(2a^k/k!)$ r.v.

(ロ) (同) (E) (E) (E) (O) (O)

Case: $d = 3, \theta = 3$

When $p = an^{-2}$ these configurations contribute to { ω_0 spans H}.



Case:
$$d = 3, \theta = 3$$

Theorem (Gravner, Hoffman, Pfeiffer, S. (2014)) If $p = an^{-2}$ then as $n \to \infty$ $\mathbb{P}_p(\omega_{\infty} \equiv 1) \to 1 - e^{-a^3 - (3/2)a^2(1 - e^{-2a})} \times \left[\frac{3}{2}a^2\left(\left(e^{-a} + ae^{-3a}\right)^2 - e^{-2a}\right)e^{-a^2e^{-2a}} + e^{a^3e^{-3a}}\right].$

Critical exponents for other d and θ

When $p \simeq n^{-\alpha}$ it is easy to show:

If α > 1 + d/θ then ω₀ will not span *H* w.h.p. (All vertices have < θ open neighbors.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Critical exponents for other d and θ

When $p \simeq n^{-\alpha}$ it is easy to show:

- If α > 1 + d/θ then ω₀ will not span H w.h.p. (All vertices have < θ open neighbors.)
- If α ≤ 1 then ω₀ will span H w.h.p.
 (Each vertex has ≥ θ open neighbors with positive probability.)

・ コット ふぼう ふほう ふほう 一日・

Critical exponents for other d and θ

Recall $p_c = p_c(d, \theta, n)$ is such that:

$$\mathbb{P}_{\rho_c}(\omega_{\infty} \equiv 1) = 1/2.$$

Theorem: Critical exponents for large θ

For fixed $d \ge 3$, θ sufficiently large depending on d, and n sufficiently large depending on d, θ ,

$$1 + \frac{2}{\theta} + \frac{\sqrt{7}}{\theta^{3/2}} \le \frac{-\log p_c}{\log n} \le 1 + \frac{2}{\theta} + \frac{4(d^2 + 1)}{\theta^{3/2}}.$$

A (1) × (2) × (2) ×

Bounds on critical exponents

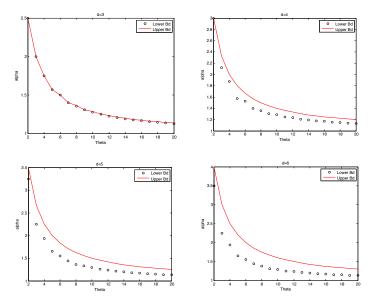
For d = 3, we have matching bounds for some small values of θ

θ	2	3	4	5	6	7	8	9	10	11	12
Lower Bound	<u>5</u> 2	2	$\frac{7}{4}$	$\frac{11}{7}$	<u>3</u> 2	$\frac{7}{5}$	<u>19</u> 14	<u>17</u> 13	<u>23</u> 18	<u>5</u> 4	<u>27</u> 22
Upper Bound	<u>5</u> 2	2	$\frac{7}{4}$	<u>11</u> 7	<u>3</u> 2	7 5	<u>15</u> 11	<u>17</u> 13	9 7	<u>5</u> 4	<u>21</u> 17

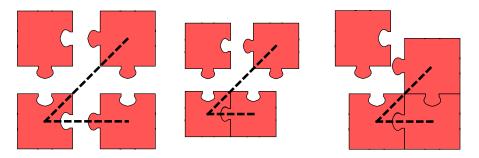
- Lower bound is via dimension reduction.
- Upper bound is the minimum of $1 + \frac{3}{\theta}$ and either $1 + \frac{8}{3\theta-1}$ if θ is odd or $\frac{8}{3\theta-2}$ if θ is even.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - わへで

Bounds on critical exponents



Jigsaw Percolation



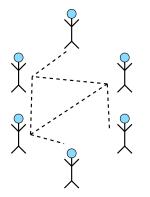
Joint work with: Charles Brummitt, Shirshendu Chatterjee, Partha Dey, Janko Gravner

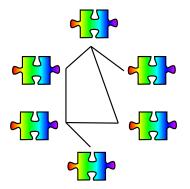
э

Motivation

- DARPA challenge: UCSD team used crowdsourcing to piece together shredded paper.
- Polymath Project: Tim Gowers' experiment with "massively collaborative mathematics."
- How might people *cooperatively* combine their individual ideas to solve a problem?

A new dynamic on multitype networks

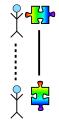




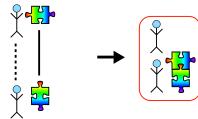
э

• If two people know each other...

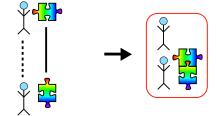
- If two people know each other...
- and have compatible ideas...



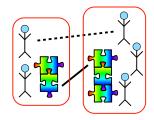
- If two people know each other...
- and have compatible ideas...
- then they merge their ideas.



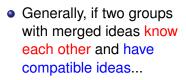
- If two people know each other...
- and have compatible ideas...
- then they merge their ideas.



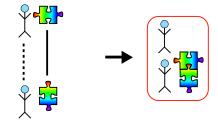
 Generally, if two groups with merged ideas know each other and have compatible ideas...

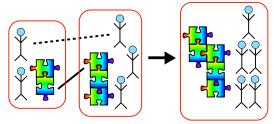


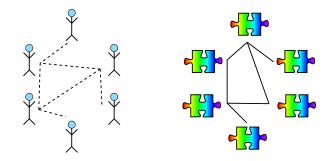
- If two people know each other...
- and have compatible ideas...
- then they merge their ideas.



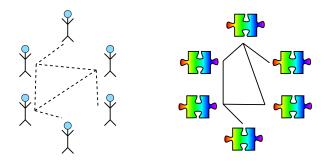
• then they merge their ideas.





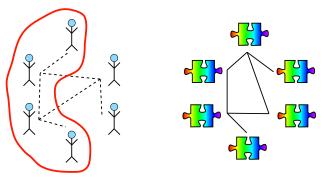


People Graph of who knows whom: Puzzle Graph of compatible ideas: (V, E_{people}) .



Each person has one unique piece of the puzzle.

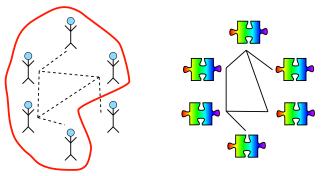
People Graph of who knows whom: Puzzle Graph of compatible ideas: (V, E_{people}) . (V, E_{puzzle}) .



Each person has one unique piece of the puzzle.

People Graph of who knows whom: Puzzle Graph of compatible ideas: (V, E_{people}) . (V, E_{puzzle}) .

Successively merge groups that know one another and have compatible puzzle pieces.

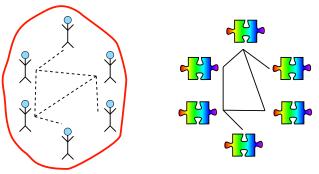


Each person has one unique piece of the puzzle.

People Graph of who knows whom: Puzzle Graph of compatible ideas: (V, E_{people}) . (V, E_{puzzle}) .

Successively merge groups that know one another and have compatible puzzle pieces.

Solved the puzzle!

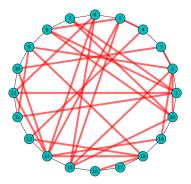


Each person has one unique piece of the puzzle.

People Graph of who knows whom: Puzzle Graph of compatible ideas: (V, E_{people}) . (V, E_{puzzle}) .

Successively merge groups that know one another and have compatible puzzle pieces.

- People Graph: Erdős-Rényi random graph (V, E_{people}) ~ G(n, p).
- Puzzle Graphs: Connected graphs on *n* vertices.



How connected must the people graph be to solve the puzzle?

Results

Theorem (Brummitt, Chatterjee, Dey, S. (2014))

For any connected puzzle graph if $p = \lambda/\log n$ with $\lambda > \pi^2/6$, then as $n \to \infty$

 $\mathbb{P}_{\rho}(\text{Solve}) \to 1.$

Theorem (Gravner, S.)

Let *D* be the maximum puzzle degree. If $p = \mu/(D \log n)$ with $\mu < 2e^{-4}$, then

 $\mathbb{P}_{\rho}(\text{Solve}) \to 0.$

Results

Theorem (Brummitt, Chatterjee, Dey, S. (2014))

For any connected puzzle graph if $p = \lambda/\log n$ with $\lambda > \pi^2/6$, then as $n \to \infty$

 $\mathbb{P}_{\rho}(\text{Solve}) \to 1.$

Theorem (Gravner, S.)

Let *D* be the maximum puzzle degree. If $p = \mu/(D \log n)$ with $\mu < 2e^{-4}$, then

 $\mathbb{P}_{\rho}(\text{Solve}) \to 0.$

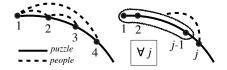
Corollary: For puzzles of bounded degree, $p_c = \Theta(1 / \log n)$.

・ロト・ (理)・ (目)・ (目)・ (日)・ (の)へ()

Proofs (Main Ideas)

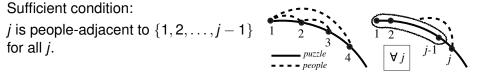
Upper Bound: $p_c \leq \frac{\pi^2}{6 \log n}$

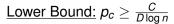
Sufficient condition: *j* is people-adjacent to $\{1, 2, ..., j - 1\}$ for all *j*.



Proofs (Main Ideas)

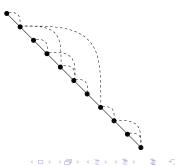
Upper Bound: $p_c \leq \frac{\pi^2}{6 \log n}$





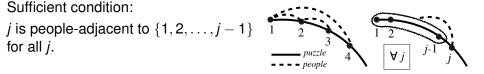
Necessary condition:

For any *k* there is a puzzle-connected set of size $\in [k, 2k]$ that is internally solved.



Proofs (Main Ideas)

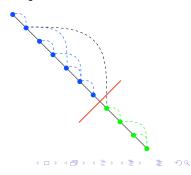
Upper Bound: $p_c \leq \frac{\pi^2}{6 \log n}$



Lower Bound:
$$p_c \geq \frac{C}{D \log n}$$

Necessary condition:

For any *k* there is a puzzle-connected set of size $\in [k, 2k]$ that is internally solved.



General Results: Improved Upper Bound

Matching order bounds for some famous *D*-regular transitive graphs: $p_c \simeq 1/(D \log N)$.

Theorem (Gravner, S.)

Let $p_c = \inf\{p : \mathbb{P}_p(\text{Solve}) > 1/2\}.$

• The *d*-dimensional torus \mathbb{Z}_n^d has $p_c = \Theta(1/(d^2 \log n))$.

(日) (日)

General Results: Improved Upper Bound

Matching order bounds for some famous *D*-regular transitive graphs: $p_c \simeq 1/(D \log N)$.

Theorem (Gravner, S.)

Let $p_c = \inf\{p : \mathbb{P}_p(\text{Solve}) > 1/2\}.$

- The *d*-dimensional torus \mathbb{Z}_n^d has $p_c = \Theta(1/(d^2 \log n))$.
- The 2-dimensional torus \mathbb{Z}_n^2 with spread-out edges, $x \leftrightarrow y$ if $||x y||_{\infty} \leq r$, has $p_c = \Theta(1/(r^2 \log n))$.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

General Results: Improved Upper Bound

Matching order bounds for some famous *D*-regular transitive graphs: $p_c \simeq 1/(D \log N)$.

Theorem (Gravner, S.)

Let $p_c = \inf\{p : \mathbb{P}_p(\text{Solve}) > 1/2\}.$

- The *d*-dimensional torus \mathbb{Z}_n^d has $p_c = \Theta(1/(d^2 \log n))$.
- The 2-dimensional torus \mathbb{Z}_n^2 with spread-out edges, $x \leftrightarrow y$ if $||x y||_{\infty} \leq r$, has $p_c = \Theta(1/(r^2 \log n))$.
- The hypercube $\{0,1\}^n$ has $p_c = \Theta(1/n^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うへで

General Results: Improved Upper Bound

Matching order bounds for some famous *D*-regular transitive graphs: $p_c \simeq 1/(D \log N)$.

Theorem (Gravner, S.)

Let $p_c = \inf\{p : \mathbb{P}_p(\text{Solve}) > 1/2\}.$

- The *d*-dimensional torus \mathbb{Z}_n^d has $p_c = \Theta(1/(d^2 \log n))$.
- The 2-dimensional torus \mathbb{Z}_n^2 with spread-out edges, $x \leftrightarrow y$ if $||x y||_{\infty} \leq r$, has $p_c = \Theta(1/(r^2 \log n))$.
- The hypercube $\{0,1\}^n$ has $p_c = \Theta(1/n^2)$.
- The Hamming graph \mathbb{Z}_n^d with edges $x \leftrightarrow y$ if $||x y||_H = 1$ has $p_c = \Theta(1/(d^2 n \log n))$.

・ロト・ (理)・ (目)・ (目)・ (日)・ (の)へ()

Counterexamples

From this one might conjecture that $p_c \approx 1/(D \log N)$ for transitive *D*-regular graphs.

Counterexamples

From this one might conjecture that $p_c \approx 1/(D \log N)$ for transitive *D*-regular graphs.

Simple counterexample: $G_{puz} = K_n$, so $D \sim n$. If $1/(n \log n) \ll p \ll \log n/n$, then G_{ppl} is disconnected whp, so $\mathbb{P}_p(\text{Solve}) \to 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Counterexamples

From this one might conjecture that $p_c \approx 1/(D \log N)$ for transitive *D*-regular graphs.

Simple counterexample: $G_{puz} = K_n$, so $D \sim n$. If $1/(n \log n) \ll p \ll \log n/n$, then G_{ppl} is disconnected whp, so $\mathbb{P}_p(\text{Solve}) \to 0$.

Nontrivial counterexample: $G_{puz} = K_n \times \mathbb{Z}_{(\log n)^3}$, where \mathbb{Z}_m is the cycle of *m* vertices, so $D \sim n$, $N = n(\log n)^3$. If $p = \mu/(n \log n)$ with $\mu > 0$, then G_{ppl} is connected whp, but $\mathbb{P}_p(\text{Solve}) \to 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Model Generalization

Fix thresholds: $\theta, \tau, \sigma \ge 1$. links(v, A) = # Puzzle edges between v and $A \subset V$. collaborators(v, A) = # People edges between v and $A \subset V$.

New Rules

Merge two clusters, W_1 and W_2 , if at least one of the following hold:

- (1) there are doubly connected vertices $v_1 \in W_1$ and $v_2 \in W_2$;
- (2) there is a vertex $v_1 \in W_1$ with collaborators $(v_1, W_2) \ge \sigma$ and $links(v_1, W_2) \ge \tau$.
- (3) there is a vertex $v_1 \in W_1$ with $links(v_1, W_2) \ge \theta$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model Generalization

Fix thresholds: $\theta, \tau, \sigma \ge 1$. links(v, A) = # Puzzle edges between v and $A \subset V$. collaborators(v, A) = # People edges between v and $A \subset V$.

New Rules

Merge two clusters, W_1 and W_2 , if at least one of the following hold:

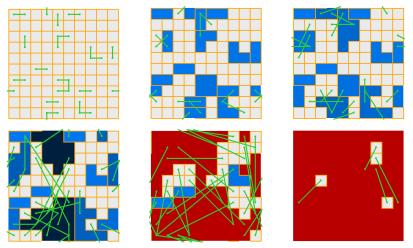
- (1) there are doubly connected vertices $v_1 \in W_1$ and $v_2 \in W_2$;
- (2) there is a vertex $v_1 \in W_1$ with collaborators $(v_1, W_2) \ge \sigma$ and $links(v_1, W_2) \ge \tau$.
- (3) there is a vertex $v_1 \in W_1$ with $links(v_1, W_2) \ge \theta$;

If $\tau = \sigma = 1$ and $\theta = \infty$, this gives the Adjacent-Edge jigsaw percolation.

Open question: Is Adjacent-Edge jigsaw percolation distinguishable from basic jigsaw percolation?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Model Generalization



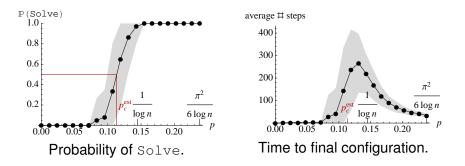
Adjacent-Edge JP on 10×10 torus, with p = 0.11, at times $t = 0, \dots, 5$.

イロン イヨン イヨン

э

Sharp Transitions for the Ring Puzzle

Adjacent-Edge JP on \mathbb{Z}_n with n = 1000, averaged over 200 trials.



Sharp Transitions for the Ring Puzzle

Theorem: Threshold for solving the ring.

Let $\sigma \geq 1, \tau = 1, \theta = \infty$ and

$$\lambda_{c} := -\int_{0}^{\infty} \log \mathbb{P}(\operatorname{Poisson}(x) \geq \sigma) \, dx.$$

If $G_{puz} = \mathbb{Z}_n$ then

 $p_c \log n \rightarrow \lambda_c$,

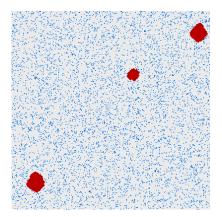
with sharp transition.

Theorem: Time to final configuration.

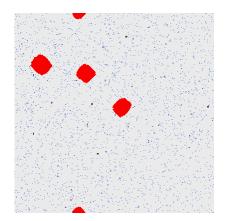
If $p \sim \lambda / \log n$ and T_f is the first time the final partition is reached, then, in probability

$$\begin{cases} \limsup_{n \to \infty} \frac{T_f}{\log n} < \infty & \text{if } \lambda < \lambda_c \\ \lim_{n \to \infty} \frac{\log T_f}{\log n} = \frac{\lambda_c}{\lambda} & \text{if } \lambda > \lambda_c \end{cases}$$

n = 400.

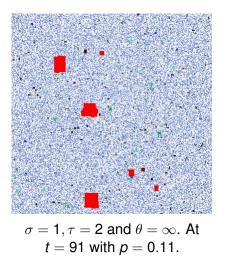


Adjacent-Edge BP at t = 31with p = 0.021.



$\sigma = \tau = 1$ and $\theta = 2$. At t = 31with p = 0.009.

n = 400.



Let $\tau = \sigma = 1$ and $\theta = \infty$ (Adjacent-Edge JP).

Theorem: 2d-torus bounds For all large enough *n*, $\frac{0.0388}{\log n} < p_c < \frac{0.303}{\log n}.$

Proof Ideas:

- Lower Bound: Number of connected subsets of size k containing the origin is ≤ (4.65)^k [Finch '99].
- Upper Bound: Internally solve triangles and p^{site}_c < 0.6795 [Wierman '95].

・ロト・(理)・・ヨト・ヨト ヨー うへで

Let $\tau = 1, \sigma \ge 1$ and $\theta = 2$.

Theorem: 2d-torus jigsaw-bootstrap percolation

Let $g(x) = -\log(1 - e^{-x})$ and define

$$\lambda_{c} = \int_{0}^{\infty} g\left(\frac{x^{2\sigma+1}}{\sigma!}\right) dx = \frac{(\sigma!)^{1/(2\sigma+1)} \Gamma(\frac{1}{2\sigma+1}) \zeta(\frac{2\sigma+2}{2\sigma+1})}{(2\sigma+1)}$$

Then as $n \to \infty$,

$$p_c(\log n)^{2+rac{1}{\sigma}} o \lambda_c^{2+rac{1}{\sigma}},$$

with sharp transition.

Note that σ affects the order of p_c !

Let $\tau = 2, \sigma \ge 1$ and $\theta \ge 2$.

Theorem: 2d-torus restricted jigsaw percolation

If $\theta > 2$, then

If θ

$$\begin{split} \frac{\pi^2}{6} &\leq \liminf_{n \to \infty} p_c \log n \\ &\leq \limsup_{n \to \infty} p_c \log n \leq \frac{\pi^2}{6} - \frac{1}{2} \int_0^\infty \log \mathbb{P}(\operatorname{Poisson}(x) \geq \sigma) \, dx. \\ &= 2, \text{ then} \\ &\qquad p_c \log n \to \frac{\pi^2}{6} \end{split}$$

with sharp transition.

Note that p_c does not depend on σ when $\theta = 2$.

Open problems

• For Adjacent-Edge BP on \mathbb{Z}_n^2 , can a sharp transition be proved? For $\tau = 2, \theta > 2$?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Open problems

- For Adjacent-Edge BP on \mathbb{Z}_n^2 , can a sharp transition be proved? For $\tau = 2, \theta > 2$?
- Thresholds for other puzzle graphs? (ℤ^d_n, random regular graph, hypercube, Hamming graph, etc.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Open problems

- For Adjacent-Edge BP on \mathbb{Z}_n^2 , can a sharp transition be proved? For $\tau = 2, \theta > 2$?
- Thresholds for other puzzle graphs? (ℤ^d_n, random regular graph, hypercube, Hamming graph, etc.)
- Rates of convergence?

Thank you!

