Deterministic percolation from random seeds

o

David Sivakoff
Ohio State University

November 17, 2014



Bootstrap Percolation




Graphs

A graph, G = (V, E), is a set of vertices, V, along with a set of
undirected edges, E C (3).

Examples:

@ Square lattice (finite): V = [n]? = {1,2,...,n}?,
E={(u,v)e(3) : lu—vly=1}

@ Hypercube: V = {0,1}", E = {(u,v) € (%) : |u—v|,=1}.




Bootstrap Percolation

Fix a ‘threshold’ 0 € Z,..
Let A(v) be the graph neighborhood of v € V.
For p=p(n) € (0,1), let {w(v)},cv be i.i.d. Bernoulli(p).

Bootstrap percolation is the increasing sequence of configurations in
{0,1}":

wp =w

1 ifwi(v)=1o0r ywi(w) >0
(V) = {0 els/e( ) S (W)

for k > 1, and w is the pointwise limit.

We say that wg spans F C Vif ws|r =1, and spans G if ws = 1.



Bootstrap Percolation - Example

On the (finite) 2-dimensional nearest-neighbor lattice with 8 = 2.
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Bootstrap Percolation - Example

On the (finite) 2-dimensional nearest-neighbor lattice with 8 = 2.
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Bootstrap Percolation - History (Infinite Graphs)

Developed by Chalupa, Leith & Reich (1979) as a simple model of
nucleation and metastability.

They proposed the model on the “Bethe lattice”, aka the infinite
(d + 1)-regular tree.

In the infinite graph setting,

pe = Pc(G, 0) = inf{p: Pp(wee = 1) > 0}.

For transitive graphs (e.g., trees, lattices),

pe = sup{p : Pp(ws =1) < 1}.
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Bootstrap Percolation - History (Infinite Graphs)

—¢ Consider
! ! (d+1) = (3+ 1)-regular tree
¢ [ | . and 9 = 2.

Pp(we 1) =
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with no open vertices)




Bootstrap Percolation - History (Infinite Graphs)

+
.
e

Consider
(d+1) = (83+ 1)-regular tree
and 6 = 2.

Pp(weo # 1) =
IPp(3 a 3-regular subtree
with no open vertices)

=1

< Pp(empty binary tree
rooted at v within ternary
subtree rooted at v) > 0.
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Bootstrap Percolation - History (Infinite Graphs)

Pp(empty binary tree
rooted at v within ternary
subtree rooted at v)

=y=y(p).

. y= Z ( ) P — (1 — )y
| jj il _t.p).
..




Bootstrap Percolation - History (Infinite Graphs)
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Pp(empty binary tree
rooted at v within ternary
subtree rooted at v)

=y=y(p).

y= Z ( ) PI[T — (1 — p)yI*¥

=: f(y,P).

0 is always a solution, but can show that
y is the largest solution in [0, 1].



Bootstrap Percolation - History (Infinite Graphs)
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aa

Pp(empty binary tree
rooted at v within ternary
subtree rooted at v)

=y=y(p).

y= Z ( ) PI[T — (1 — p)yI*¥

o)

0 is always a solution, but can show that
y is the largest solution in [0, 1].

pc = inf{p: y = f(y, p) has only
one root at y = 0}

1
9



Bootstrap Percolation - History (Infinite Graphs)

Most interest is in lattices, such as Z°.

First rigorous result is due to van Enter (1987) for d = 2, extended to
d > 2 by Schonmann (1992)

Theorem (Nearest-neighbor lattice Z)
Ifo <d, thenp.=0.1If0 > d, thenp, =1.

Interesting cases are 2 < 6 < d.



Bootstrap Percolation - History (Infinite Graphs)
When d =0 = 2,

Pp(wse = 1) > Pp(GOOD configuration exists).




Bootstrap Percolation - History (Infinite Graphs)
When d =6 = 2,

Pp(wse = 1) > Pp(GOOD configuration exists).

P»,(GOOQOD configuration at 0) >

1o ]“




Bootstrap Percolation - History (Infinite Graphs)

M oo 4
P»(GOOD configuration at 0) > [ [ 1 - (1 — p)k]




Bootstrap Percolation - History (Finite Graphs)

For a finite box of side length n, how large does p need to be?

In finite graphs, the critical value p; = p¢(n) is defined as

Ppo(weo = 1) =1/2.



Bootstrap Percolation - History (Finite Graphs)

Scaling for pc:

Lattice cubes: V = [n]? c Z9, nearest neighbor edges.

°0=2: (log n)~(d=1) [Aizenman & Lebowitz, 1988].

Hypercube: V = {0, 1}", nearest neighbor edges.
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Bootstrap Percolation - History (Finite Graphs)

Scaling for pc:

Lattice cubes: V = [n]? c Z9, nearest neighbor edges.
°0=2: (log n)~(d=1)

[Aizenman & Lebowitz, 1988].
@3<0<d: (log’"n)-(d-0+1)

[Cerf & Cirillo, 1999;
Cerf & Manzo, 2002].
Hypercube: V = {0, 1}", nearest neighbor edges.

°0=2 n—22-2vn [Balogh & Bollobas, 2006]
e 9=[n/2]: 1-1,/'%"  [Balogh, Bollobas, & Morris, 2009]

These results suggest existence of an order parameter: a function of n
and p whose size determines whether Pp(wo = 1) is near 0 or 1.



Bootstrap Percolation - History (Finite Graphs)

Does Pp(ws = 1) exhibit a sharp jump from 0 to 1 as the order
parameter increases?

If so, does the location of the sharp jump converge?
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@ ForV=[n?andf=2: p;~ % [Holroyd, 2003]

@ For V =[n]9 and 2 < # < d, sharp threshold established by
[Balogh, Bollobas, Duminil-Copin, & Morris, 2012]



Bootstrap Percolation - History (Finite Graphs)

@ ForV=[n?andf=2: p;~ % [Holroyd, 2003]

@ For V =[n]9 and 2 < # < d, sharp threshold established by
[Balogh, Bollobas, Duminil-Copin, & Morris, 2012]

@ For V = [n]?, § = 2, and the ‘cross’ neighborhood (k — 1 nearest
points in each of 4 directions): pg ~ Wf)logn [Holroyd,
Liggett & Romik, 2004]



The Hamming Graph

The Hamming graph with side length n and dimension d is the graph
with the following vertex set, V, and edge set, E.

V={1,2....n9
E={(x,y)e VxV:dx,y) =1},

where d(x, y) is the Hamming distance between x and y (number of
coordinates at which they differ). Denote this graph by H = H(d, n)




Main Questions

@ Fix d and 6. For which values of p = p(n) does Pp(wee = 1) — 17

For which values of p does Pp(ws =1) — 07?

@ Does the probability of spanning H converge to a nontrivial limit in
some regime? If so, what is the limit?



Testcase: 0 =2,d =2

When d = 2, two (non-collinear) open vertices are necessary and
sufficient for spanning.
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Testcase: 0 =2,d =2

When d = 2, two (non-collinear) open vertices are necessary and
sufficient for spanning.

If p = an—2 then |wy| = Poisson(a)

This implies Pp(wee = 1) = 1 — (1 + a)e™ 4.



Case:d=2,0>3

Theorem (Gravner, Hoffman, Pfeiffer, S. (2014))
Letk >2 andp = a-n(kt1/k,
@ If) =2k —1, thenPp(ws = 1) — 1 — exp(—2a*/k!).

@ Ifo =2k, then Pp(wee =1) — [1 — exp(—ak/k!)]z.




Case:d=2,0>3

“Proof” for 0 = 2k — 1:

7y

k-1

k-1
k-1

k-1

N (

{

X (k-1)

One line with k open vertices is likely to span. The number of lines
with k open vertices converges to a Poisson(2a”/k!) r.v.

20



Case: d=3,0=3

When p = an—? these configurations contribute to {w spans H}.

T

21



Case: d=3,0=3

Theorem (Gravner, Hoffman, Pfeiffer, S. (2014))
Ifp=an—2 thenasn— oo

Pp(woo =1) = 1 — e a—(3/2)@(1-e729)

2 L N
[gaz ((e_a+ ae—33> _ e—23> e—aze 2 + eaSe 3 '

V.

bl



Critical exponents for other d and ¢

When p < n™* it is easy to show:
@ If a > 1+ ¢ then wy will not span H w.h.p.
(All vertices have < 8 open neighbors.)

29



Critical exponents for other d and ¢

When p < n™* it is easy to show:
@ If a > 1+ ¢ then wy will not span H w.h.p.
(All vertices have < 8 open neighbors.)

@ If o < 1 then wp will span H w.h.p.
(Each vertex has > 6 open neighbors with positive probability.)

29



Critical exponents for other d and ¢

Recall pc = p¢(d, 0, n) is such that:

Ppe(weo = 1) =1/2.

Theorem: Critical exponents for large 6

For fixed d > 3, 0 sufficiently large depending on d, and n sufficiently
large depending on d, 8,

_ 2
V7 _ —logpc 12 M)

2
T4yt < ogn = T8 g3

24



Bounds on critical exponents

For d = 3, we have matching bounds for some small values of 6

| 0 [2]3]4]5[6[7[8 ]9 [10[11[12]
LowerBound || 5 |2 | 2 | 1|3 2|18 12128 5 |2
UpperBound || 5 |2 | 2 | 113 2|8 |11 8| 5 12

@ Lower bound is via dimension reduction.
@ Upper bound is the minimum of 1 + 3 and either 1 + 52+ if 0 is
odd or 52 if  is even.

25



Bounds on critical exponents

a3 =4
2
| LowerBd
\ UpperBd
2t 4
\
= \
&
15 6 N
°
14 0 o T~
° o
12
I T )
s 6 8 10 12 14 6 18 20 i
Theta
Theta
=5 da=s
3
\
3
25
s s
£ | £es 1
J °
°
of 1
°
° °
18]
° 15 °
°
1 1
P E— 2 4 6 8 10 12 14 16 18 20
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Jigsaw Percolation

:. ‘,
' ,

Joint work with: Charles Brummitt, Shirshendu Chatterjee, Partha Dey, Janko

Gravner



Motivation
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‘ }a 2 |., ....-uawcm«a- g |
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@ DARPA challenge: UCSD team
used crowdsourcing to piece
together shredded paper.

@ Polymath Project: Tim Gowers’
experiment with “massively
collaborative mathematics.”

@ How might people cooperatively
combine their individual ideas to
solve a problem?

28



People and Ideas (Puzzle Pieces)

A new dynamic on multitype networks

29



People and Ideas (Puzzle Pieces)

@ If two people know each i
other...
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other... : ‘

: —>
@ and have compatible : i
ideas... i %

@ then they merge their
ideas.

@ Generally, if two groups
with merged ideas know
each other and have
compatible ideas...
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People and Ideas (Puzzle Pieces)

@ If two people know each i i
other... : ‘

@ and have compatible
ideas...

@ then they merge their
ideas.

@ Generally, if two groups
with merged ideas know
each other and have
compatible ideas...

@ then they merge their ideas.

20



Jigsaw Percolation Model

People Graph of who knows whom: Puzzle Graph of compatible ideas:
( V> Epeople)-

1



Jigsaw Percolation Model
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Each person has one unique piece of the puzzle.

People Graph of who knows whom: Puzzle Graph of compatible ideas:
( V> Epeople)- ( V, Epuzzle)-
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Jigsaw Percolation Model

ok < ek

Each person has one unique piece of the puzzle.
People Graph of who knows whom: Puzzle Graph of compatible ideas:
( V> Epeople)- ( V, Epuzzle)-

Successively merge groups that know one another and have
compatible puzzle pieces.

1



Jigsaw Percolation Model
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Each person has one unique piece of the puzzle.

People Graph of who knows whom: Puzzle Graph of compatible ideas:
( V> Epeople)- ( V, Epuzzle)-
Successively merge groups that know one another and have
compatible puzzle pieces.
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Jigsaw Percolation Model

Solved the puzzle!

T

{%@{&

<
L

Each person has one unique piece of the puzzle.

People Graph of who knows whom: Puzzle Graph of compatible ideas:
( V> Epeople)- ( V, Epuzzle)-
Successively merge groups that know one another and have
compatible puzzle pieces.

1



Jigsaw Percolation Model

@ People Graph: Erd6s-Rényi random graph (V, Eyeople) ~ G(n, p).
@ Puzzle Graphs: Connected graphs on n vertices.

How connected must the people graph be to solve the puzzle?

22



Results

Theorem (Brummitt, Chatterjee, Dey, S. (2014))

For any connected puzzle graph if p = \/log n with A > 72/6, then as
n— oo

Pp(Solve) — 1.

Theorem (Gravner, S.)

Let D be the maximum puzzle degree. If p = p/(Dlog n) with
p < 2e~4, then

Pp(Solve) — 0.

ki)



Results

Theorem (Brummitt, Chatterjee, Dey, S. (2014))

For any connected puzzle graph if p = \/log n with A > 72/6, then as
n— oo

Pp(Solve) — 1.

Theorem (Gravner, S.)

Let D be the maximum puzzle degree. If p = p/(Dlog n) with
p < 2e~4, then
Pp(Solve) — 0.

Corollary: For puzzles of bounded degree, p. = ©(1/log n).

ki)



Proofs (Main Ideas)
Upper Bound: p; <

6|7(;g n
Sufficient condition:

J is people-adjacentto {1,2,...,j— 1}
for all j.
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Proofs (Main Ideas)
Upper Bound: p; <

6|7(;g n
Sufficient condition:

J is people-adjacentto {1,2,...,j— 1}
for all j.

_C
Dlogn

Lower Bound: p; >

Necessary condition:

For any k there is a puzzle-connected set
of size € [k, 2k] that is internally solved.
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General Results: Improved Upper Bound

Matching order bounds for some famous D-regular transitive graphs:
pc < 1/(Dlog N).

Theorem (Gravner, S.)
Let pc = inf{p : Pp(Solve) > 1/2}.
@ The d-dimensional torus Z¢ has p. = ©(1/(d? log n)).
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General Results: Improved Upper Bound

Matching order bounds for some famous D-regular transitive graphs:
pc < 1/(Dlog N).

Theorem (Gravner, S.)
Let pc = inf{p : Pp(Solve) > 1/2}.
@ The d-dimensional torus Z¢ has p. = ©(1/(d? log n)).

@ The 2-dimensional torus Z2 with spread-out edges, x « y if
IX = ¥lloo < 1, has pe = ©(1/(r?log n)).
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General Results: Improved Upper Bound

Matching order bounds for some famous D-regular transitive graphs:
pc < 1/(Dlog N).

Theorem (Gravner, S.)
Let pc = inf{p : Pp(Solve) > 1/2}.
@ The d-dimensional torus Z¢ has p. = ©(1/(d? log n)).
@ The 2-dimensional torus Z2 with spread-out edges, x « y if
IX = ¥l < r, has pec = ©(1/(r?log n)).
@ The hypercube {0,1}" has p. = ©(1/n?).
@ The Hamming graph ZZ with edges x < y if || x — y||y, = 1 has
pc = ©(1/(d?nlog n)).

25



Counterexamples

From this one might conjecture that p. < 1/(Dlog N) for transitive
D-regular graphs.
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From this one might conjecture that p. < 1/(Dlog N) for transitive
D-regular graphs.

Simple counterexample: Gy ; = K», so D ~ n.
If 1/(nlog n) < p < log n/n, then Gy is disconnected whp, so
Pp(Solve) — 0.
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Counterexamples

From this one might conjecture that p. < 1/(Dlog N) for transitive
D-regular graphs.

Simple counterexample: Gy ; = K», so D ~ n.
If 1/(nlog n) < p < log n/n, then Gy is disconnected whp, so
Pp(Solve) — 0.

Nontrivial counterexample: Gy, = Kj x Z(iog ny3 where Zp, is the

cycle of m vertices, so D ~ n, N = n(log n)3.
If p = u/(nlog n) with 1. > 0, then Gy, is connected whp, but
Pp(Solve) — 0.

26



Model Generalization

Fix thresholds: 6, 7,0 > 1.

links(v,A) = # Puzzle edges between vand AC V.
collaborators(v,A) = # People edges between vand AcC V.
New Rules

Merge two clusters, W; and W, if at least one of the following hold:
(1) there are doubly connected vertices vy € Wy and v» € Wh;

(2) thereis a vertex v € Wj with collaborators(vy, Ws) > o and
links(vy, Wo) > 7.

(8) there is a vertex vy € Wy with 1inks(vq, Wa) > 6;

7




Model Generalization

Fix thresholds: 0, 7,0 > 1.

links(v,A) = # Puzzle edges between vand AC V.
collaborators(v,A) = # People edges between vand A cC V.

New Rules
Merge two clusters, W; and W, if at least one of the following hold:
(1) there are doubly connected vertices vi € Wy and v» € Wh;

(2) there is a vertex vq € Wj with collaborators(vy, Wo) > o and
links(vy, Wo) > 7.
(8) there is a vertex vy € Wy with 1inks(vq, Wa) > 6;

If - =0 =1 and 8 = oo, this gives the Adjacent-Edge jigsaw
percolation.

Open question: Is Adjacent-Edge jigsaw percolation distinguishable
from basic jigsaw percolation?
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Model Generalization

K

Adjacent-Edge JP on 10 x 10 torus, with p = 0.11, at times
t=0,...,5.

28



Sharp Transitions for the Ring Puzzle

Adjacent-Edge JP on Z, with n = 1000, averaged over 200 trials.

P(ls(())' ve) average it steps

' 400}

08]
300!

0.6]

0.4} 200¢

1 2
0.2} pest—— 100}
I?gn GI?gn
o T 00 010 015 020 P 000 * 005" 010 015 020

Probability of solve. Time to final configuration.
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Sharp Transitions for the Ring Puzzle
Theorem: Threshold for solving the ring.
Leto >1,7=1,0 =00 and

Ac 1= —/ log P(Poisson(x) > o) dx.
0

If Gpuz = Zn then
pclogn — Ac,

with sharp transition.

Theorem: Time to final configuration.

If p ~ A/lognand T is the first time the final partition is reached, then,
in probability

log n

My 20T — A jf X > )\,

{Iimsup,,_mi <oo A< A
log n

40



Jigsaw Percolation on Z2

n = 400.

Adjacent-Edge BP at t = 31 c=7=1andf =2. Att =31
with p = 0.021. with p = 0.009.

a1



Jigsaw Percolation on 72

o=1 T_2and9 0. A'[
t:91 with p = 0.11

a1



Jigsaw Percolation on 72

Let 7 = o =1 and § = oo (Adjacent-Edge JP).

Theorem: 2d-torus bounds
For all large enough n,

0.0388 < < 0.303
logn ~P¢ = logn"

Proof Ideas:

@ Lower Bound: Number of connected subsets of size k containing
the origin is < (4.65) [Finch '99].

@ Upper Bound: Internally solve triangles and p$'® < 0.6795
[Wierman ’95].
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Jigsaw Percolation on 72

Letr=1,0>1andf =2.
Theorem: 2d-torus jigsaw-bootstrap percolation
Let g(x) = —log(1 — e™*) and define
20+2

% [ x2o+ (o) BN ()¢ (52E5)
A"‘/0 g( B )dx_ (20 + 1) '

Then as n — oo,
1 2+1
pc(logn)®*= — Az °,

with sharp transition.

Note that o affects the order of p!

43



Jigsaw Percolation on 72

Letr=2,0>1and 6 > 2.

Theorem: 2d-torus restricted jigsaw percolation
If @ > 2, then

2

©_ <liminfpel
& =liminfpclogn
. I i
<limsuppclogn < — — - log P(Poisson(x) > o) dx.
n—o0 6 2 0
If & = 2, then
logn T
pclogn — 5

with sharp transition.

Note that p. does not depend on o when § = 2.

a4



Open problems

@ For Adjacent-Edge BP on Z2, can a sharp transition be proved?
Forr=2,0 > 27
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@ Thresholds for other puzzle graphs? (Z9, random regular graph,
hypercube, Hamming graph, etc.)
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Open problems

@ For Adjacent-Edge BP on Z2, can a sharp transition be proved?
Forr=2,0 > 27

@ Thresholds for other puzzle graphs? (Z9, random regular graph,
hypercube, Hamming graph, etc.)

@ Rates of convergence?
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Thank you!




