Factoring, random maps, and polynomial maps

Derek Garton

Portland State University

November 5, 2013

Factoring is a thing that number theorists do

RSA-768 =
1230186684530117755130494958384962720772853569595334
7921973224521517264005072636575187452021997864693899
5647494277406384592519255732630345373154826850791702
6122142913461670429214311602221240479274737794080665
351419597459856902143413 =
3347807169895689878604416984821269081770479498371376
8568912431388982883793878002287614711652531743087737
814467999489 - 367460436667995904282446337996279526322
7915816434308764267603228381573966651127923337341714
3396810270092798736308917

Sizes of numbers

Computers work in binary.

b blanks (or bits)
—_—

| S —

2b possible numbers represented, from 0 to 20-1

The “size” of a number is the number of bits required to store it;
ie, the size of a number n, if 261 <n<2b -1, is

b(n) =[logy (n+1)] ~ log, n

Trial division

Suppose n is a large composite number, with smallest factor p.

Very naive factoring method (Trial Division)

Does 2 divide n?
Does 3 divide n?
Does 4 divide n?
Does 5 divide n?
Does 6 divide n?

Terminates by finding p in about p steps:

p= 2|og2p ~ 2b(p)’

so the runtime of Trial Division is exponential in b(p).

Trial division

Suppose n is a large composite number, with smallest factor p.

Very naive factoring method (Trial Division)

Does 2 divide n?
Does 3 divide n?
Does 5 divide n?

Terminates by finding p in about %p steps:

Ep = }2loggp ~ 20(P)-1
20 2

so the runtime of Trial Division is (still) exponential in b(p).

Pollard’s “rho” algorithm

Pretend that | want to factor 41831.

First | need a “pseudorandom” sequence mod 41831, say

(xi)=0,1,2,5,26,677, 40020, 16904, 39487, 14476, 23098, 5031,
3207, 36255, 11344, 14181, 19145, 7804, 38312, 1386, 38602,
10523, 6873, 10931, ...

Pollard’s “rho” algorithm (0 -1 -2 —-5—26 -)

What | do: compute ged (41831, |x2j+1 — x;|) for i=0,1,2,...
ged (41831,]1-0]) =1,

ged (41831,5-1]) = 1,

ged (41831,]677 - 2|) = 1,

ged (41831, (16904 - 5|) = 1,

ged (41831,(14476 — 26|) = 1,

ged (41831,(5031 - 677)) = 1,

ged (41831, [36255 — 40020)) = 1,

ged (41831,]14181 — 16904|) = 1,

ged (41831,[7804 — 39487|) = 50.

What's going on (Birthday Theorem)

We won when ged (41831, |7804 — 39487|) = 59; ie, when

x17 = xg (mod 59).
Theorem (The Birthday Theorem)

Suppose you have p numbers. If you choose [\/Iog4 . \/;3] of these

numbers, with repetition, then the probability that two are the

same is over %

So modulo 59, the odds are you'll get a repeat after

[\/@~ \/@] =11 steps.

@ Random number generators are not allowed

@ Can't store all terms of a sequence, and wait until a repeat.

What's going on (Collision time)

The sequence (x;) is not a random sequence. In fact, we choose a
“pseudorandom” function ¢ modulo 41831, and set

xo =0 xi = ¢ (xi-1)
x0 = 0:= ¢°(0) xi = ¢'(0) = ¢ o0 (0).

—_—
i times

What do | mean by “collision time”?
CT? (xo) = the smallest i such that x; = x; for some j < 1.

Well, we found a factor when xg = x;7 mod 59; ie, when
$8(0) = ¢ (0) (mod 59).

What's happening mod 59?7 (0 > 1 ->2 526 - --)

264 .

5; 214 41

° [
1 >7 CTgy (0) =11
0: CT?9(18) =5

CTY, (16) = CTE, (21) = CTE, (29) = 3

Collision time (continued)

Theorem (Collision time)

The average collision time of random functions on size p set is \/p.
More precisely, there are pP functions on {0,...,p—1} and

S CT,C(a)) ~p /P.

pP f:{O,.A.,p—l}—>{0,...,p—1}(p 2¢{0,...,p-1}

And now something amazing happens

Let ¢(x) = x> + 1.

Floyd's cycle-finding algorithm

Algorithm is deterministic.

How do we find collisions? (Recall, we can’t just “remember”
everything that has happened.)

We use Floyd's cycle-finding algorithm:

Algorithm (Floyd's cycle finding algorithm)

Compute |xpj41 — x;| for i =0,1,2,...

What's happening mod 597

39 28 R
261 .
5.’ Z4 41
0* bt
14 57
\
0.

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

264 .
5! Z4 41
24 .
14 57
A
0.

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

26 .
5! Z4 41
o* °
14 >/
A
0e

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

39 28 5L e
264 .
5! Z4 41
iy .
14 57
A
0.

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

26 .
5! Z4 41
o* °
14 >/
A
0e

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

26} .
5! Z4 41
o* °
14 >/
A
0e

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

39 28/ R
261 .
5! Z4 41
o* bt
14 57
\
0.

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

26 .
5! Z4 41
o* °
14 >/
A
0e

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

26 .
5! Z4 41
o* °
14 >/
A
0e

Derek Garton Factori

ing, random maps, and polynomial maps

What's happening mod 597

1 21
[]
17 304 1
af _J
39 284 55 3
26 .
5! Z4 41
o* °
14 >/
A
0.

Derek Garton Factor

ing, random maps, and polynomial maps

Failure (and conjectural success)

Pollard’s “rho” algorithm can fail, just try to factor 4:

0-1-2-1-2>1-2->1->.-

Success Conjecture (Silverman)

Let ¢(x) be the polynomial ¢(x) = x> +1, and let € >0. Then.

l €
o P < X with “correct” CT}| |{p1CT2(0) < p2*)
im = im _

Runtime

Success Conjecture

So when the “rho” algorithm works, its runtime is about

/P =208 VP = oilogyp _ 53b(p) _ /3PP

Better!

Part Il: The Arizona Winter School 2010

@ Week-long number theory workshop every March.
@ It's warm there.

@ 2010 was the “dynamics” year.

@ Silverman was my project leader.

@ Silverman said, “"Remember how every polynomial gives you a
graph modp for every prime p?”

@ “Can you say anything about the average number of
components of these graphs?”

http://swc.math.arizona.edu/

Comparing polynomials to random functional graphs

Facts about random functional graphs graphs

@ The average number of components of a random functional
graph on p numbers is ~, %Iog p.

@ The average number of periodic points of a random functional
graph on p numbers is ~, \/p.

@ The average collision time of a random functional graph on p
numbers is ~, \/p.

There are two ways to show polynomial functions “act randomly":

@ Fix a polynomial ¢ and consider ¢ mod p for all primes p.

e Fix a prime p, and consider all polynomials ¢ (of a fixed,
hopefully small, degree d) over [Fp,.

The “other way" to average polynomial maps

Fix a prime p and a degree d. Compute

1
. components of [y ¢|.
{¢ € Fp[x] | deg () = d}| ¢>e1FZp:[x] i g
deg (¢)=d

In particular, is the above average anywhere close to %Iog p?

Randomness result

Theorem (Flynn and G.)

1
’ ts of I
{6 € Folx] | deg (9) = d})| &%h]memmwso o)
deg (¢)=d

1
> log (min{d,\/p}) - 7
In particular, if d > \/p, then

1
{6 e Fp[x] [deg (¢) = d}| ¢GFZ,,:[X]

deg (¢)=d

‘{components of r¢}\

1 1
> 2| -z
5 og (p) p

A sample computation

Any polynomial looks like of degree d or less has the form

o(x) = agx? + ag_1x¥ Tt + o+ arx + ag,

so there are
e p?*1 polynomials of degree d or less,
e p? polynomials of degree d — 1 or less, and

o p?™l — p9 polynomials of degree d.

We try to compute

d++_d- > ‘{components of F¢}|.
P P™ g, [x]

deg (¢)=d

Lagrange interpolation

Lagrange interpolation

Suppose you have k data points in Fp, ie, a set
S= {(317 bl)a s (ak, bk)}

Then there exists an interpolating polynomial ¢s with

deg (¢s) < k;
ie, such that ¢s(a;) = b; for all i e {1,... k}.

This is the analog of the “theorem” that two points determine a
line; ie, given (x1,y1) and (x2,y»), that line is

y2-xn
y—Yy2= (x = x2)
X2 — X1

S0 bs(x) = L2 (x—xp) + ya.

Examples of Lagrange interpolation

@ Suppose S ={(2,2),(4,6),(5,2)} c F7 xF;.
Then ¢s(x) =5x%+3, and

$s5(2) =2
$s(4) =6
¢s(5) =2.

Then ¢s(x) = x*> +x +1, and

$s(1) =3
$s(2)=0
$s(5) =3
¢s(6) = 1.

|dea of proof

Instead of counting “components per polynomial”,
count “polynomials per component” instead.

That is,
> |{components of r¢}\
$eFp[x]
deg (¢)=d
= > |{polynomials ¢ interpolating C}|.
possible

components C

Cycles are in 1-1 correspondence with graph components, so let’s
count cycles instead.

Making the counting problem easier

@ Count the number of possible cycles of length k.
@ Count the number of polynomials interpolating each k-cycle.
@ Then

Z ‘{components of r¢}\
¢elFp[x]
deg (¢)=d

> |{polynomials ¢ interpolating C}|
possible
components C

> |{polynomials ¢ interpolating C}|
possible
cycles C

p
_ Z (number of cycles) (number of polynomials)
of length k interpolating a k-cycle /-
k=1

The final step of the proof (and recap)

1
’ fr
[{¢ € Fp[x] | deg () = d}| ¢€F§£[X] ‘{COmponents 0 ¢}|

) deg (¢)=d
= —a Z ‘{components of I’¢}‘
PP geR,[x]
. deg (¢)=d
=g > |{polynomials ¢ interpolating C}|
P -p possible
components C
1

T pdtl _pd > |{polynomials ¢ interpolating C}|
P -p possible

cycles C
1 P :

_ . number of cycles) (number of polynomlals)
T pd+l _ pd Z (of length k interpolating a k-cycle

P S|
> - . P (d-k+1 _ d—k)_ -

d+1 _ pd k p P - k
p p k=1 k=1

The theorem

Theorem (Flynn and G.)

1
’ ts of I
{6 € Folx] | deg (9) = d})| &%h]memmwso o)
deg (¢)=d

1
> log (min{d,\/p}) - 7
In particular, if d > \/p, then

1
{6 e Fp[x] [deg (¢) = d}| ¢GFZ,,:[X]

deg (¢)=d

‘{components of r¢}\

1 1
> 2| -z
5 og (p) p

Further work

We only count k-cycles for k < d. The long cycles are mysterious.

What about when d +1 < k < ,/p?

o Well, we bound the average below, by ZZ:I % ~ logd.
@ But we want a better bound!

@ How many degree d polynomials interpolate a k-cycle when
k>d?
1

@ The odds that three points are on a line is rE

@ The odds that four points are on a line is about #.

@ The odds that k points are on a degree d polynomial. . .is
pd+1—k?

@ Do these probabilities carry over to cycles?

@ Do these probabilities give the right answer?

More further work

What about when k > max{,/p,d +1}7?

e We only bound the average from below, what about from
above?

o When k > ./p, the number of cycles is “about” zero.

o Is it “zero enough” to give an upper bound, assuming the
guess on the previous slide?

o We could carry out computations to test the hypothesis that
degree 2 polynomials act like random functional graphs.

Thank you slide

Thank you!

Derek Garton Factoring, random maps, and polynomial maps

