
Factoring, random maps, and polynomial maps

Derek Garton

Portland State University

November 5, 2013

Derek Garton Factoring, random maps, and polynomial maps



Factoring is a thing that number theorists do

Example

RSA-768 =

1230186684530117755130494958384962720772853569595334

7921973224521517264005072636575187452021997864693899

5647494277406384592519255732630345373154826850791702

6122142913461670429214311602221240479274737794080665

351419597459856902143413 =

3347807169895689878604416984821269081770479498371376

8568912431388982883793878002287614711652531743087737

814467999489 ⋅ 367460436667995904282446337996279526322

7915816434308764267603228381573966651127923337341714

3396810270092798736308917

Derek Garton Factoring, random maps, and polynomial maps



Sizes of numbers

Computers work in binary.

b blanks (or bits)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ. . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2b possible numbers represented, from 0 to 2b−1

The “size” of a number is the number of bits required to store it;
ie, the size of a number n, if 2b−1 ≤ n ≤ 2b − 1, is

b(n) = ⌈log2 (n + 1)⌉ ≈ log2 n

Derek Garton Factoring, random maps, and polynomial maps



Trial division

Suppose n is a large composite number, with smallest factor p.

Very naive factoring method (Trial Division)

Does 2 divide n?
Does 3 divide n?
Does 4 divide n?
Does 5 divide n?
Does 6 divide n?

⋮

Terminates by finding p in about p steps:

p = 2log2 p ≈ 2b(p),

so the runtime of Trial Division is exponential in b(p).

Derek Garton Factoring, random maps, and polynomial maps



Trial division

Suppose n is a large composite number, with smallest factor p.

Very naive factoring method (Trial Division)

Does 2 divide n?
Does 3 divide n?
Does 4 divide n?
Does 5 divide n?
Does 6 divide n?

⋮

Terminates by finding p in about 1
2p steps:

1

2
p =

1

2
2log2 p ≈ 2b(p)−1,

so the runtime of Trial Division is (still) exponential in b(p).

Derek Garton Factoring, random maps, and polynomial maps



Pollard’s “rho” algorithm

Pretend that I want to factor 41831.

First I need a “pseudorandom” sequence mod 41831, say

(xi) = 0, 1, 2, 5, 26, 677, 40020, 16904, 39487, 14476, 23098, 5031,

3207, 36255, 11344, 14181, 19145, 7804, 38312, 1386, 38602,

10523, 6873, 10931, . . .

Derek Garton Factoring, random maps, and polynomial maps



Pollard’s “rho” algorithm (0→ 1→ 2→ 5→ 26→ ⋯)

What I do: compute gcd (41831, ∣x2i+1 − xi ∣) for i = 0,1,2, . . .

gcd (41831, ∣1 − 0∣) = 1,

gcd (41831, ∣5 − 1∣) = 1,

gcd (41831, ∣677 − 2∣) = 1,

gcd (41831, ∣16904 − 5∣) = 1,

gcd (41831, ∣14476 − 26∣) = 1,

gcd (41831, ∣5031 − 677∣) = 1,

gcd (41831, ∣36255 − 40020∣) = 1,

gcd (41831, ∣14181 − 16904∣) = 1,

gcd (41831, ∣7804 − 39487∣) = 59.

Derek Garton Factoring, random maps, and polynomial maps



What’s going on (Birthday Theorem)

We won when gcd (41831, ∣7804 − 39487∣) = 59; ie, when

x17 ≡ x8 (mod 59).

Theorem (The Birthday Theorem)

Suppose you have p numbers. If you choose ⌈
√

log 4 ⋅
√
p⌉ of these

numbers, with repetition, then the probability that two are the
same is over 1

2 .

So modulo 59, the odds are you’ll get a repeat after

⌈
√

log 4 ⋅
√

59⌉ = 11 steps.

Random number generators are not allowed

Can’t store all terms of a sequence, and wait until a repeat.

Derek Garton Factoring, random maps, and polynomial maps



What’s going on (Collision time)

The sequence (xi) is not a random sequence. In fact, we choose a
“pseudorandom” function φ modulo 41831, and set

x0 = 0 xi = φ (xi−1)

x0 = 0 ∶= φ0(0) xi = φ
i
(0) ∶= φ ○ ⋯ ○ φ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i times

(0).

What do I mean by “collision time”?

CTφ (x0) = the smallest i such that xi = xj for some j ≤ i .

Well, we found a factor when x8 ≡ x17 mod 59; ie, when

φ8(0) ≡ φ17(0) (mod 59).

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59? (0→ 1→ 2→ 5→ 26→ ⋯)

CTφ59 (0) = 11

CTφ59 (18) = 5

CTφ59 (16) = CTφ59 (21) = CTφ59 (29) = 3

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



Collision time (continued)

Theorem (Collision time)

The average collision time of random functions on size p set is
√
p.

More precisely, there are pp functions on {0, . . . ,p − 1} and

1

pp
⋅ ∑
f ∶{0,...,p−1}→{0,...,p−1}

⎛

⎝

1

p
⋅ ∑
a∈{0,...,p−1}

CTf
p (a)

⎞

⎠
∼p

√
p.

And now something amazing happens

Let φ(x) = x2 + 1.

Derek Garton Factoring, random maps, and polynomial maps



Floyd’s cycle-finding algorithm

Algorithm is deterministic.

How do we find collisions? (Recall, we can’t just “remember”
everything that has happened.)

We use Floyd’s cycle-finding algorithm:

Algorithm (Floyd’s cycle finding algorithm)

Compute ∣x2i+1 − xi ∣ for i = 0,1,2, . . .

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



What’s happening mod 59?

30

18
28

26

5

2
1

0

16

21

29

57

39

17

41

51

3

44

Derek Garton Factoring, random maps, and polynomial maps



Failure (and conjectural success)

Pollard’s “rho” algorithm can fail, just try to factor 4:

0→ 1→ 2→ 1→ 2→ 1→ 2→ 1→ ⋯

Success Conjecture (Silverman)

Let φ(x) be the polynomial φ(x) = x2 + 1, and let ε > 0. Then.

lim
X→∞

∣{p ≤ X with “correct” CT}∣

∣{p ≤ X}∣
= lim

X→∞

∣{p ∣ CTφp (0) ≤ p
1
2
+ε}∣

∣{p ≤ X}∣
= 1

Derek Garton Factoring, random maps, and polynomial maps



Runtime

Success Conjecture

So when the “rho” algorithm works, its runtime is about

√
p = 2log2

√
p
= 2

1
2
log2 p = 2

1
2
b(p)

=
√

2
b(p)

.

Better!

Derek Garton Factoring, random maps, and polynomial maps



Part II: The Arizona Winter School 2010

Week-long number theory workshop every March.

It’s warm there.

2010 was the “dynamics” year.

Silverman was my project leader.

Silverman said, “Remember how every polynomial gives you a
graph modp for every prime p?”

“Can you say anything about the average number of
components of these graphs?”

Derek Garton Factoring, random maps, and polynomial maps

http://swc.math.arizona.edu/


Comparing polynomials to random functional graphs

Facts about random functional graphs graphs

The average number of components of a random functional
graph on p numbers is ∼p

1
2 log p.

The average number of periodic points of a random functional
graph on p numbers is ∼p

√
p.

The average collision time of a random functional graph on p
numbers is ∼p

√
p.

There are two ways to show polynomial functions “act randomly”:

Fix a polynomial φ and consider φ mod p for all primes p.

Fix a prime p, and consider all polynomials φ (of a fixed,
hopefully small, degree d) over Fp.

Derek Garton Factoring, random maps, and polynomial maps



The “other way” to average polynomial maps

Goal

Fix a prime p and a degree d . Compute

1

∣{φ ∈ Fp[x] ∣ deg (φ) = d}∣
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣.

In particular, is the above average anywhere close to 1
2 log p?

Derek Garton Factoring, random maps, and polynomial maps



Randomness result

Theorem (Flynn and G.)

1

∣{φ ∈ Fp[x] ∣ deg (φ) = d}∣
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

> log (min{d ,
√
p}) −

1

4
.

In particular, if d ≥
√
p, then

1

∣{φ ∈ Fp[x] ∣ deg (φ) = d}∣
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

>
1

2
log (p) −

1

4
.

Derek Garton Factoring, random maps, and polynomial maps



A sample computation

Any polynomial looks like of degree d or less has the form

φ(x) = adx
d
+ ad−1x

d−1
+⋯ + a1x + a0,

so there are

pd+1 polynomials of degree d or less,

pd polynomials of degree d − 1 or less, and

pd+1 − pd polynomials of degree d .

We try to compute

1

pd+1 − pd
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣.

Derek Garton Factoring, random maps, and polynomial maps



Lagrange interpolation

Lagrange interpolation

Suppose you have k data points in Fp; ie, a set
S = {(a1,b1), . . . , (ak ,bk)}.

Then there exists an interpolating polynomial φS with
deg (φS) < k;

ie, such that φS(ai) = bi for all i ∈ {1, . . . , k}.

This is the analog of the “theorem” that two points determine a
line; ie, given (x1, y1) and (x2, y2), that line is

y − y2 =
y2 − y1
x2 − x1

(x − x2)

so φS(x) =
y2−y1
x2−x1

(x − x2) + y2.

Derek Garton Factoring, random maps, and polynomial maps



Examples of Lagrange interpolation

Suppose S = {(2,2), (4,6), (5,2)} ⊆ F7 × F7.
Then φS(x) = 5x2 + 3, and

φS(2) = 2
φS(4) = 6
φS(5) = 2.

Suppose S = {(1,3), (2,0), (5,3), (6,1)} ⊆ F7 × F7.
Then φS(x) = x2 + x + 1, and

φS(1) = 3
φS(2) = 0
φS(5) = 3
φS(6) = 1.

Derek Garton Factoring, random maps, and polynomial maps



Idea of proof

Instead of counting “components per polynomial”,
count “polynomials per component” instead.

That is,

∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

= ∑
possible

components C

∣{polynomials φ interpolating C}∣.

Observation

Cycles are in 1-1 correspondence with graph components, so let’s
count cycles instead.

Derek Garton Factoring, random maps, and polynomial maps



Making the counting problem easier

Count the number of possible cycles of length k .

Count the number of polynomials interpolating each k-cycle.

Then

∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

= ∑
possible

components C

∣{polynomials φ interpolating C}∣

= ∑
possible
cycles C

∣{polynomials φ interpolating C}∣

=

p

∑
k=1

(
number of cycles

of length k ) (
number of polynomials
interpolating a k-cycle).

Derek Garton Factoring, random maps, and polynomial maps



The final step of the proof (and recap)

1

∣{φ ∈ Fp[x] ∣ deg (φ) = d}∣
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

=
1

pd+1 − pd
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

=
1

pd+1 − pd
⋅ ∑

possible
components C

∣{polynomials φ interpolating C}∣

=
1

pd+1 − pd
⋅ ∑
possible
cycles C

∣{polynomials φ interpolating C}∣

=
1

pd+1 − pd
⋅

p

∑
k=1

(
number of cycles

of length k ) (
number of polynomials
interpolating a k-cycle)

>
1

pd+1 − pd
⋅

min{d ,
√
p}

∑
k=1

(
pk

k
)(pd−k+1 − pd−k) =

min{d ,
√
p}

∑
k=1

1

k
. ◻

Derek Garton Factoring, random maps, and polynomial maps



The theorem

Theorem (Flynn and G.)

1

∣{φ ∈ Fp[x] ∣ deg (φ) = d}∣
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

> log (min{d ,
√
p}) −

1

4
.

In particular, if d ≥
√
p, then

1

∣{φ ∈ Fp[x] ∣ deg (φ) = d}∣
⋅ ∑
φ∈Fp[x]
deg (φ)=d

∣{components of Γφ}∣

>
1

2
log (p) −

1

4
.

Derek Garton Factoring, random maps, and polynomial maps



Further work

We only count k-cycles for k ≤ d . The long cycles are mysterious.

What about when d + 1 < k <
√
p?

Well, we bound the average below, by ∑d
k=1

1
k ≈ log d.

But we want a better bound!

How many degree d polynomials interpolate a k-cycle when
k > d?

The odds that three points are on a line is 1
p .

The odds that four points are on a line is about 1
p2
.

The odds that k points are on a degree d polynomial. . . is

pd+1−k?
Do these probabilities carry over to cycles?

Do these probabilities give the right answer?

Derek Garton Factoring, random maps, and polynomial maps



More further work

What about when k > max{
√
p,d + 1}?

We only bound the average from below, what about from
above?

When k >
√
p, the number of cycles is “about” zero.

Is it “zero enough” to give an upper bound, assuming the
guess on the previous slide?

We could carry out computations to test the hypothesis that
degree 2 polynomials act like random functional graphs.

Derek Garton Factoring, random maps, and polynomial maps



Thank you slide

Thank you!

Derek Garton Factoring, random maps, and polynomial maps


