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1 Introduction

A copula is a function that joins or “couples” a bivariate distribution function H(x, y)
to its one-dimensional marginal distribution functions F (x) and G(y)—defined im-
plicitly by the relationship H(x, y) = C(F (x), G(y)). Equivalently, a copula is a
bivariate distribution function with uniform (0, 1) margins. For a formal treatment of
copulas and their properties, see the monographs by Hutchinson and Lai (1990), Joe
(1997), and Nelsen (1999), and conference proceedings edited by Beneš and Štěpán
(1997), Cuadras et al. (2002), Dall’Aglio et al. (1991), Dhaene et al. (2003), and
Rüschendorf et al. (1996).

The importance of copulas in statistical modeling is partially explained in
Sklar’s Theorem (1959): Let H be a two-dimensional distribution function with
marginal distribution functions F and G. Then there exists a copula C such that
H(x,y) = C(F(x),G(y)). Conversely, for any distribution functions F and G and any
copula C, the function H defined above is a two-dimensional distribution function with
marginals F and G. Furthermore, if F and G are continuous (as we shall assume), C
is unique.

Sklar’s theorem also applies to survival functions. Let X, Y be continuous random
variables with survival functions F (x) = Pr(X > x) and G(x) = Pr(Y > y), and joint
survival function H(x) = Pr(X > x, Y > y). The function Ĉ which couples H to
F and G via H(x, y) = Ĉ(F (x), G(x)) is called the survival copula of X and Y .
Furthermore, Ĉ is a copula, and Ĉ(u, v) = u+ v− 1 +C(1−u, 1− v), where C is the
(ordinary) copula of X and Y .

If one has a collection of copulas, then using Sklar’s theorem, one can construct
bivariate distributions with arbitrary marginal distributions. Thus, for the purposes
of statistical modeling, it is desirable to have a large collection of copulas at one’s
disposal. A great many examples of copulas can be found in the literature, most are
members of families with one or more real parameters. An important class of such
families are the Archimedean copulas.
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2 Archimedean Copulas

An Archimedean copula is a function C from [0, 1]2 to [0, 1] given by C(u, v) =
φ[−1](φ(u) + φ(v)), where φ (the generator of C) is a continuous strictly decreas-
ing convex function from [0, 1] to [0,∞] such that φ(1) = 0, and where φ[−1] denotes
the “pseudo-inverse” of φ: φ[−1](t) = φ−1(t) for t ∈ [0, φ(0)], and φ[−1](t) = 0 for
t ≥ φ(0). When φ(0) = ∞, φ and C are said to be strict (and φ[−1] = φ−1); when
φ(0) < ∞, φ and C are non-strict. Furthermore, C(u, v) > 0 on (0, 1]2 if and only if
C is strict.

The term Archimedean for these copulas arises as follows. One form of the
Archimedean property states that if u and v are real numbers in (0, 1), then there
exists an integer n such that un < v. Given a copula C, define “C-multiplication” ◦
by u ◦ v = C(u, v). Then un is defined recursively by u2 = u ◦ u and un = un−1 ◦ u.
Archimedean copulas satisfy the above Archimedean property with respect to the
C-multiplication ◦. [Note: non-Archimedean copulas also have this property as long
as C(u, u) < u for u in (0, 1).] The term “Archimedean copula” first appeared in
the statistical literature in two papers by Genest and Mackay (1986ab), although
the word Archimedean was employed by Ling in 1965 for Archimedean t-norms (ev-
ery Archimedean copula is also an Archimedean t-norm). Archimedean copulas also
appear in Schweizer and Sklar (1983) but without the name.

Archimedean copulas are widely used in applications due to their simple form, a
variety of dependence structures, and other“nice” properties. For example, most but
not all extend to higher dimensions via the associativity property [C is associative if
C(C(u, v), w) = C(u, C(v, w))]. A collection of twenty-two one-parameter families of
Archimedean copulas can be found in Table 4.1 of Nelsen (1999).

3 Simulation

In this section we present two algorithms to generate an observation (u, v) from an
Archimedean copula C with generator φ.

Algorithm I:
1. Generate two independent uniform (0, 1) variates s and t;
2. Set w = K(−1)(t),where K(t) = t − φ(t)/φ′(t+) [K(−1)(t) = sup{x|K(t) ≤ x}];
3. Set w = φ[−1]

(
sφ(w)

)
and v = φ[−1]

(
(1 − s)φ(w)

)
.

Algorithm I is a consequence of the fact that if U and V are uniform random vari-
ables with an Archimedean copula C, then W = C(U, V ) and S = φ(U)/(φ(U)+φ(V ))
are independent, S is uniform (0, 1), and the distribution function of W is K (Genest
and Rivest, 1993).

Algorithm II:
1. Generate two independent uniform (0, 1) variates u and t;

2. Set w = φ′(−1)
(
φ′(u)/t

)
;
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3. Set v = φ[−1]
(
φ(w) − φ(u)

)
.

Algorithm II is the “conditional distribution function” method, where v = c
(−1)
u (t)

for cu(t) = ∂C(u, v)/∂u = P [V ≤ v|U = u].
In the talk we will present scatterplots for samples from several families of Archimedean

copulas to illustrate the variety of dependence structures present.

4 The zero set and the zero curve

The zero set of a copula C is Z(C) =
{

(u, v) ∈ [0, 1]2 |C(u, v) = 0
}

. For C Archi-

medean with generator φ, C(u, v) = 0 is equivalent to φ(u)+φ(v) ≥ φ(0). When C is
strict [φ(0) = ∞], Z(C) consists of the two line segments {0}× [0, 1] and [0, 1]×{0}.
When C is non-strict [φ(0) < ∞] Z(C) can have positive area, and the zero set is the
portion of [0, 1]2 below the zero curve φ(u) + φ(v) = φ(0).
Example 1. Let φ(t) = (1 − t)2. Then the zero curve of the Archimedean copula
generated by φ is one-quarter of the circle centered at (1, 1) with radius 1; and the
zero set is the portion of the square [0, 1]2 bounded by the quarter circle and the two
axes. �

The probability mass assigned to the zero curve depends on the ordinate and the
one-sided derivative of the generator at 0:
Theorem 1. If C is a non-strict Archimedean copula with generator φ, then the
C-measure of the zero curve φ(u) + φ(v) = φ(0) is

− φ(0)

φ′(0+)
,

and hence equal to 0 whenever φ′(0+) = −∞.

5 Two examples of an Archimedean dependence

structure

Example 2. In the Proceedings of the First Brazilian Conference on Statistical
Modelling in Insurance and Finance, we considered the following problem (also see
Schmitz, 2004). Let {X1, X2, · · · , Xn} be a set of independent and identically dis-
tributed continuous random variables with distribution function F , and let X(1) =
min{Xi} and X(n) = max{Xi}. Let C1,n denote the copula of X(1) and X(n). For
convenience, we first found the joint distribution function H∗ and copula C∗ of −X(1)

and X(n), rather than X(1) and X(n):

H∗(s, t) =

{
[F (t) − F (−s)]n, −s ≤ t,
0, −s > t,

and to find C∗, we “inverted:” C∗(u, v) = H∗(G(−1)(u), F
(−1)
n (v)), where G denotes

the distribution function of −X(1) and Fn the distribution function of X(n). Hence
C∗(u, v) =

[
max

(
u1/n + v1/n − 1, 0

)]n
, a member of the Clayton family (4.2.1) in

3



Table 4.1 of Nelsen (1999) (with θ = −1/n). Since X(1) is a decreasing function of
−X(1), the copula C1,n of X(1) and X(n) is

C1,n(u, v) = v − C∗(1 − u, v) = v −
[
max

(
(1 − u)1/n + v1/n − 1, 0

)]n
.

Although X(1) and X(n) are clearly not independent (C1,n(u, v) �= uv), they are asymp-
totically independent since limn→∞ C1,n(u, v) = uv. �
Example 3. Let X = (X1, · · · , Xn) be a vector of continuous nonnegative random
variables (“lifetimes”) with a Schur-constant joint survival function P (X > x) =
S(x1 + · · · + xn) for an appropriate function S. The lifetimes Xi are exchangeable,
lower-dimensional margins are Schur-constant, and the Xi satisfy an indifference-to-
aging property: two residual lifetimes (Xi−xi) and (Xj−xj) of different ages xi and xj

have the same conditional distribution: P (Xi−xi > t|X > x) = P (Xj−xj > t|X > x)
for any x in [0,∞)n.
Theorem 2. The components of X with a Schur-constant survival function are in-
dependent if and only if they are exponentially distributed.

Thus the indifference-to-aging property is a generalization of the lack-of-memory
property. The following lemma and theorem exhibit the relationship between Schur-
constant survival functions and Archimedean copulas.
Lemma 3. Let S be a continuous (univariate) survival function. Then S(x + y) is a
bivariate survival function if and only if S is convex.
Theorem 4. Let X and Y be lifetimes with a Schur-constant survival function P (X >
x, Y > y) = S(x + y). Then X and Y possess an Archimedean survival copula whose
generator is the inverse of S.

A converse holds, and hence there is a one-to-one correspondence between Schur-
constant survival models (modulo a scale parameter) and Archimedean copulas. For
example:

Pareto survival functions ⇐⇒ Clayton copulas
Weibull survival functions ⇐⇒ Gumbel-Hougaard copulas

Gompertz survival functions ⇐⇒ Gumbel-Barnett copulas, etc.

For details and the extension to n dimensions, see (Nelsen, 2005). �

6 Multi-parameter families

In many instances, a single parameter does not provide sufficient flexibility for mod-
eling purposes. In this section we discuss methods to add a parameter.

Let φ be a generator, and define φα,1(t) = φ(tα) and φ1,β(t) = [φ(t)]β. Then:

i) φ1,β is a generator for all β ≥ 1;

ii) φα,1 is a generator for all α in (0, 1];

iii) if φ is twice differentiable and tφ′(t) is nondecreasing on (0,1), then φα,1 is
a generator for all α > 0.
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The set {φα,1} is the interior power family of generators associated with φ and {φ1,β}
is the exterior power family of generators associated with φ (Oakes, 1994).
Example 4. (Fang et al., 2000): φθ(t) = ln ([1 − θ(1 − t]/t) generates the Ali-Mikhail-
Haq family [(4.2.3 in Table 4.1 of Nelsen (1999)]; and since tφ′

φ(t) is nondecreasing
for θ in [0, 1], the interior power family of copulas associated with φθ is, for u, v, θ in
[0, 1], α > 0:

Cθ;α,1(u, v) =
uv

[1 − θ(1 − u1/α)(1 − v1/α)]α
. �

For another application, let (X1, Y1), · · · , (Xn, Yn) be i.i.d. pairs of random vari-
ables with a common Archimedean copula C (generator φ) and let C(n) denote the
copula of the component-wise maxima X(n) = max{Xi} and Y(n) = max{Yi}. Then

C(n)(u, v) = Cn(u1/n, v1/n) =
[
φ[−1]

(
φ(u1/n) + φ(v1/n)

)]n
.

The generator of C(n) is φ1/n,1(t) = φ(t1/n), and thus the copula of the component-
wise maxima is a member of the interior power family generated by φ.

Finally, we note that we can create a two-parameter family of generators from a
single generator φ: φα,β(t) = [φ(tα)]β for appropriate values of α and β.

7 Measures of association

The two most commonly employed measures of association are Spearmans rho (ρ)
and Kendalls tau (τ). If X and Y are continuous random variables with copula C,
then

ρX,Y = ρC =

{
12

∫ 1

0

∫ 1

0
uvdC(u, v) − 3,

12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3,

and

τX,Y = τC =

{
4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1,

1 − 4
∫ 1

0

∫ 1

0
∂C(u,v)

∂u
∂C(u,v)

∂v
dudv.

For Archimedean copulas, there does not appear to be a simple expression for
Spearman’s ρ in terms of the generator φ; however, for Kendall’s τ we have (Genest
and Mackay, 1986ab; Joe, 1997)

τC = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt = 1 − 4

∫ ∞

0

u

[
d

du
φ[−1](u)

]2

du.

Example 5. Let Cθ be a Clayton copula, i.e., Cθ(u, v) =
[
max

(
u−θ + v−θ − 1, 0

)]−1/θ
,

generated by φθ(t) =
(
t−θ − 1

)/
θ for θ ≥ −1. Then

φθ(t)

φ′
θ(t)

=
tθ+1 − t

θ
(θ �= 0),

φ0(t)

φ′
0(t)

= t ln t,

and hence τθ = θ/(θ + 2). In Example 2, with X(1) = min{Xi} and X(n) = max{Xi},
the copula of −X(1) and X(n) is a Clayton copula with θ = −1/n, and hence Kendall’s
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tau for −X(1) and X(n) is −1/(2n − 1). Thus Kendall’s tau for X(1) and X(n) is
1/(2n − 1). �

8 Tail Dependence

Let X and Y be continuous random variables with distribution functions F and G,
respectively. The upper tail dependence parameter λU is the limit (if it exists) of the
conditional probability that Y is greater than the 100t-th percentile of G given that
X is greater than the 100t-th percentile of F as t approaches 1, i.e.

λU = lim
t→1−

P
[
Y > G(−1)(t)

∣∣X > F (−1)(t)
]
.

Similarly, the lower tail dependence parameter λL is the limit (if it exists) of the
conditional probability that Y is less than or equal to the 100t-th percentile of G
given that X is less than or equal to the 100t-th percentile of F as t approaches 0,
i.e.

λL = lim
t→0+

P
[
Y ≤ G(−1)(t)

∣∣X ≤ F (−1)(t)
]

These parameters are nonparametric and depend only on the copula C of X and
Y , and its diagonal section δC(t) = C(t, t):

Theorem 5. λL = lim
t→0+

C(t,t)
t

= δ′C(0+) and λU = 2 − lim
t→1−

1−C(t,t)
1−t

= 2 − δ′C(1−).

When C is Archimedean with generator φ, we have

Corollary 6. λL = lim
t→0+

ϕ[−1](2ϕ(t))

t
= lim

x→∞

ϕ[−1](2x)

ϕ[−1](x)
and

λU = 2 − lim
t→1−

1 − ϕ[−1](2ϕ(t))

1 − t
= 2 − lim

x→0+

1 − ϕ[−1](2x)

1 − ϕ[−1](x)
.

The parameters λU and λL can be evaluated for the twenty-two families of Archime-
dean copulas in Table 4.1 of Nelsen (1999):

Family λL λU

3, 5, 7-11, 13, 17, 22 0 0
2, 4, 6, 15, 21 0 2 − 21/θ

18 0 1
1(θ ≥ 0) 2−1/θ 0
12 2−1/θ 2 − 21/θ

16 1/2 0
14 1/2 2 − 21/θ

19, 20 1 0

Note: The values of the parameters can be different for a limiting case. For example,
the copula denoted Π/(Σ−Π) has λL = 1/2 although it is a limiting case in families
(4.2.3), (4.2.8) and (4.2.19); and M has λU = 1 although it is a limiting case in
families (4.2.1), (4.2.5), (4.2.13), etc.
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Examining the above table raises the following question: Can we find an Archi-
medean copula with arbitrary (positive) values of λL and λU? The answer is yes,
and the method uses interior and exterior power families. Let C be Archimedean
with generator φ and upper and lower tail dependence parameters λU and λL. Let
Cα,1 and C1,β denote the copulas generated by φα,1(t) = φ(tα) and φ1,β(t) = [φ(t)]β,
respectively. Then the upper and lower tail dependence parameters of Cα,1 are λU

and λ
1/α
L , respectively, and the upper and lower tail dependence parameters of C1,β

are 2 − (2 − λU)1/β and λ
1/β
L , respectively.

Example 6. The copula Π/(Σ−Π) is generated by φ(t) = (1/t)− 1 with λU = 0 and
λL = 1/2. Hence φα,β(t) = (t−α − 1)β generates the two-parameter family (for α > 0,
β ≥ 1)

Cα,β(u, v) =
{[

(u−α − 1)β + (v−α − 1)β
]1/β

+ 1
}−1/α

.

Here λU ;α,β = 2− 21/β and λL;α,β = 2−1/αβ. If λ∗
U and λ∗

L are the desired values of
the tail dependence parameters, we solve λ∗

U = 2 − 21/β, λ∗
L = 2−1/αβ for α and β, to

obtain α = − ln(2 − λ∗
U/ ln λ∗

L and β = ln 2/ ln(2 − λ∗
U). �

9 Multivariate Archimedean copulas

First we introduce some notation, points in n-space will be denoted by u =
(u1, u2, · · · , un); a ≤ b means ak ≤ bk for all k; and for a ≤ b, [a,b] denotes the n-box
[a1, b1] × [a2, b2] × · · · × [an, bn]; and the vertices of [a,b] are points c such that each
ck is equal to either ak or bk.

An n-dimensional copula (or n-copula) is a function C : In → I such that
(i) for every u in In, C(u) = 0 if at least one coordinate of u is 0, and C(u) = uk if
all coordinates of u are 1 except uk,
(ii) C is n-increasing : for every a and b in In such that a ≤ b, the C-volume of [a,b]
is VC([a,b]) = Σsgn(c)C(c) ≥ 0, where the sum is over the vertices c of [a,b] and
sgn(c) = 1 if ck = ak for an even number of ks, and −1 if ck = ak for an odd number
of ks.

In general, constructing n-copulas is difficult. One of the most important open
problems concerning copulas is the compatibility problem. For n = 3, it is: Given
three 2-copulas C1, C2, and C3, construct a 3-copula C with C1, C2, and C3 as its
2-dimensional margins, i.e., such that C(1, v, w) = C1(v, w), C(u, 1, w) = C2(u, w)
and C(u, v, 1) = C3(u, v).

However, the associativity property enables us to often (but not always) extend
Archimedean copulas to higher dimensions. Let φ be a strict generator, and C the
function from In to I given by

C (u1, u2, · · · , un) = φ−1
(
φ(u1) + φ(u2) + · · · + φ(un)

)
.

Then for every n ≥ 2, C satisfies the boundary conditions for a copula, and will satisfy
the n-increasing condition if and only if φ−1 is completely monotone (Kimberling,
1974):
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(−1)k dk

dtk
φ−1(t) ≥ 0 for all t ∈ (0,∞) and k = 0, 1, · · ·

Many of the families in Table 4.1 of Nelsen (1999) have φ−1 completely monotone
for the portion of the parameter range for which Cθ(u, v) ≥ uv: families (4.2.n) for
n = 1, 3, 4, 5, 6, 12, 13, 14, and 19.

10 Some open questions

1. There are numerous statistical arguments that are used to justify the assumption
of normality. Are there similar arguments that can be used to justify the assumption
that the copula of two random variables is Archimedean?
2. Archimedean copulas are associative, i.e., C(C(u, v), w) = C(u, C(v, w)). What
does associativity mean statistically?
3. If an Archimedean copula is appropriate for a given data set, are there statistical
procedures for choosing a particular family (i.e., for choosing the generator)?
4. How do Archimedean families differ statistically? For example:

(a) The Frank family is the only radially symmetric family, i.e., the copula C and
the survival copula Ĉ coincide.

(b) The Gumbel-Hougaard family is the only max-stable family (and hence the

only family of Archimedean extreme value copulas), i.e.,
(
X(n), Y(n)

)
and (X, Y ) have

the same copula (Genest and Rivest, 1989).
(c) The Clayton family is the only “truncation invariant” family: If the copula

of U and V is C, then for any u0, v0 in (0, 1), the copula of the conditional random
variables U |U ≤ u0, V |V ≤ v0 is also C(Oakes, 2004).
5. Why does Π/(Σ − Π) appear in so many families (7 of 22) of Table 4.1 in Nelsen
(1999)?
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