THE JOY OF COPULAS

Why Copulas?

- Understanding relationships among multivariate outcomes is the goal of researchers.
- Regression analysis limited by the fact that one variable must be selected as dependent and the others as explanatory.
- Correlation coefficient widely used and perhaps misused measure of dependence.
- Correlation coefficient not invariant under monotonic transformation of variables.
- Marginal distributions and correlation coefficient do not determine the joint distribution, except for the elliptical distributions.
- Given marginals F_1 and F_2 , not all linear correlations between -1 and 1 are attainable.

Definition

A two dimensional copula is a real function, C(x, y), defined on $I^2 = [0, 1]x[0, 1]$, with the range I = [0, 1], such that: C(0, v) = C(u, 0) = 0, for all u and v in I. C(1,v) = v, C(u, 1) = u, for all u and v in I. $C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \ge 0$, for all rectangles $[u_1, v_1]x[u_2, v_2]$ in I^2 . That is C is 2-increasing.

Remark1. We can see, from the above definition, that a copula represents the joint distribution of a two standard uniform random variables U_1 and U_2 : $C(u_1, u_2) = P(U_1 \le u_1, U_2 \le u_2)$

Remark2. Property *a*) says that C is grounded and b) says C has uniform margin.

Some important examples of copulas:

The level curves of Min(u, v)

The Product Copula: $\Pi(u,v) = uv$

Fréchet bounds

For every multivariate distribution function $F(x_1, ..., x_n)$, we have: $\max[\sum_{i=1}^n F_i(x_i) + 1 - n, 0] \le F(x_1, ..., x_n) \le \min(F_1(x_1), ..., F_n(x_n))$

The bounds are known as Fréchet bounds.

If we reduce n to 2, the bounds themselves are copulas and are denoted by:

 $M(x_1, x_2) = min(x_1, x_2)$, and $W(x_1, x_2) = max(x_1 + x_2 - 1, 0)$. Thus for every copula C and every (x_1, x_2) in **I**, we have:

 $W(x_1, x_2) \leq C(x_1, x_2) \leq M(x_1, x_2).$

Remark. For n > 2, $M(x_1, ..., x_n)$ and the product Π^n for x_i in **I** are still copulas, but the lower bound is no longer a copula.

What can one say about random variables with copulas *M* or *W*?

Assume $X_1 \sim F_1$, $X_2 \sim F_2$. Also assume $X_2 = T(X_2)$, *T* strictly increasing. *Then:*

$$\begin{aligned} F_2(x) &= P(X_2 \le x) = P(T(X_1) \le x) = P(X_1 \le T^{-1}(x)) \\ F_2(x) &= (F_1 \circ T^{-1})(x) \Longrightarrow F_2 = F_1 \circ T^{-1} \\ C(x_1, x_2) &= P(X_1 \le F_1^{-1}(x_1), X_2 \le F_2^{-1}(x_2)) = P(F_1(X_1) \le x_1, F_2(X_2) \le x_2) \\ C(x_1, x_2) &= P(F_1(X_1) \le x_1, (F_1 \circ T^{-1})(X_2) \le x_2) = P(F_1(X_1) \le x_1, F_1(X_1) \le x_2) \\ C(x_1, x_2) &= P(F_1(X_1) \le \min(x_1, x_2) = M(x_1, x_2)) \end{aligned}$$

Similarly, but with more work, it can be shown that if $X_2 = \beta(X_1)$, where β is strictly decreasing, then $C(x_1, x_2) = W(x_1, x_2)$.

SKLAR THEOREM

Let F(x,y) be a joint distribution with continuous marginals $F_1(x)$ and $F_2(x)$. Then there exists a unique copula C(x,y) such that

$$F(x, y) = C(F_1(x), F_2(y))$$

Conversely if C(x, y) is a copula and $F_1(x)$ and $F_2(y)$ are two continuous univariate distributions, then

$$F(x, y) = C(F_1(x), F_2(y))$$

is a joint distribution with marginals $F_1(x)$ and $F_2(y)$.

Definition

Let F(t) be a distribution function. Then the quasi-inverse of F is any function $F^{(-1)}(t)$ with domain I such that:

- If t is in RanF, then F⁽⁻¹⁾(t) is any number x such that F(x) = t, i.e., for all t in RanF, F(F⁽⁻¹⁾(t) = t;
- If *t* is not in Ran*F*, then $F^{(-1)}(t) = inf\{x | F(x) \ge t\} = sup\{x | F(x) \le t\}$.

Corollary:

Let F(x,y), $F_1(x)$, $F_2(y)$ and C be as in Sklar's theorem. Then for any u and v in **I**, $C(u,v) = F(F_1^{(-1)}(u), F_2^{(-1)}(v))$.

Note: This result can be extended to n dimensions.

Example:

Ŋ

$$F(x, y) = \begin{cases} \frac{(x+1)(e^{y}-1)}{x+2e^{y}-1} & (x, y) \in [-1,1] \times [0,\infty] \\ 1-e^{y} & (x, y) \in (1,\infty] \times [0,\infty] \\ 0 & elsewhere \end{cases}$$
$$F_{1}(x) = \begin{cases} 0 & x < -1 \\ (x+1)/2 & x \in [-1,1] \\ 1 & x > 1 \end{cases}$$
$$F_{2}(y) = \begin{cases} 0 & y < 0 \\ 1-e^{-y} & y \ge 0 \end{cases}$$
$$C(u, v) = \frac{uv}{u+v-uv}$$

Theorems:

- Let X and Y be continuous random variables. Then X and Y are independent iff C_{XY} = Π.
 Proof: Assume X and Y are independent. Then F(x,y) = F₁(x)F₂(y), and C(u,v) = F(F₁⁽⁻¹⁾(u), F₂⁽⁻¹⁾(v)) =F(F₁⁽⁻¹⁾(u) F(F₂⁽⁻¹⁾(v)) = uv. The other direction is clear.
- 2. Let X and Y be continuous random variables with copula C_{XY} . If α and β are strictly increasing on RanX and RanY respectively, then $C_{\alpha(X)\beta(Y)} = C_{XY}$. Proof: see Nelsen.

Note that the joint distribution of $\alpha(X)$ and $\beta(Y)$ is not the same as the joint distribution of X and Y. It is this property of copulas that will be most useful in studying the dependence structure of bivariate random variables.

Theorems cont.

- 3. Let X and Y be continuous random variables with copula C_{XY} . If α and β are strictly monotone on RanX and RanY respectively, then
 - 1. If α is strictly increasing and β is strictly decreasing, then $C_{\alpha(X)\beta(Y)}(u, v) = u C_{XY}(u, 1 v)$.
 - 2. If α is strictly decreasing and β is strictly increasing, then $C_{\alpha(X)\beta(Y)}(u, v) = v C_{XY}(1 u, v)$.
 - 3. If α and β are both strictly decreasing, then $C_{\alpha(X)\beta(Y)}(u, v) = u + v - 1 + C_{XY}(1 - u, 1 - v).$

Survival Copulas

■Let (X, Y) be a random pair with distributions $F_1(x)$, and $F_2(y)$, and with copula C. Then C is the cdf of the random pair $U = F_1(X)$ and $V = F_2(Y)$. ■The cdf of the random pair (1 - U, 1 - V) is $C^*(u, v)$ given by: $C^*(u, v) = u + v - 1 + C(1 - u, 1 - v)$. ■ C^* satisfies $P(X > x, Y > y) = \overline{F}(x, y) = C^*(\overline{F_1}(x), \overline{F_2}(y))$

Example:

If X and Y are independent, then their survivor copula is given by: $C^*(u, v) = u + v - 1 + (1 - u)(1 - v) = uv = \Pi$

Definition

Let ϕ : $[0,1] \rightarrow [0, \infty]$ be a continuous decreasing function. Then the quasi-inverse of ϕ is any function $\phi^{(-1)}$ with the domain and range I such that

a. It t is in Ran ϕ , i.e., , then $\phi^{(-1)}(t)$ is any number in such that $\phi(x) = t$, i.e. for all t in Ran ϕ , ;

b. If t is not in Ran ϕ , i.e., then $\phi^{(-1)}(t) = 0$

$$\phi^{(-1)}(t) = \begin{cases} \phi^{-1}(t) & 0 \le t \le \phi(0) \\ 0 & \phi(0) \le t \le \infty \end{cases}$$

Examples:

Now consider a class Φ of functions φ : [0, 1] \rightarrow [0, ∞] with the following properties:

Note that the functions in Φ are convex .

The following properties of a convex function will be useful later:

Property1. $\phi(\alpha x + (1 - \alpha)y) \le \alpha \phi(x) + (1 - \alpha)\phi(y)$ for α in (0, 1).

Property 2. If $x_1 \le x_2$, then there exist an x such that $\varphi(x) = \varphi(x_1) - \varphi(x_2)$.

Constructing Copulas

Consider the following function of two variables:

$$C(u,v) = \begin{cases} \varphi^{(-1)}(\varphi(u) + \varphi(v)) & \text{if } \varphi(u) + \varphi(v) \le \varphi(0) \\ 0 & \text{otherwise} \end{cases}$$

Fact: C(u,v) as defined above satisfies the conditions of a copula and therefore is a copula. Copulas of this form are called Archimedean copulas. The function

 φ is called a generator of the copula. If $\varphi(0) = \infty$, then we call ϕ a strict generator.

Elementary properties.

- 1. C is symmetric: C(u, v) = C(v, u); u, v in **I**.
- 2. C is associative: C(C(u,v),w) = C(u, C(v, w)).
- 3. If φ is a generator of *C* then for c > 0, $c\varphi$ is also a generator of *C*.
- 4. C is strict iff C(u, v) > 0, for all (u, v) in (0, 1].

The proof of these statements are straightforward!

Examples:

be.

Copula: C _θ (u, v)	Generator: φ _θ (t)	3θ
Max{[u ^{-θ} + v ^{-θ} - 1] ^{-1/θ} , 0} " <i>Clayton Family</i>	(t ^{-θ} - 1)/θ	[-1, ∞)\{0}
exp{-[(-ln(u)) ^θ + (-ln(v)) ^θ] ^{1/θ} } <i>"Gumbel-Hougaard Family"</i>	(-ln(t)) ^θ	[1, ∞)
uv/[1 - θ(1 – u)(1 – v)] " <i>Ali-Mikhail-Haq Family"</i>	In[(1 - θ(1 – t))/t]	[-1, 1]

Theorem

Let φ be a continuous, strictly decreasing function from I to $[0, \infty]$ such that $\varphi(1) = 0$, and $\varphi^{(-1)}$ be the quasi-inverse of φ . Then the function C from **P** to I given by $C(u, v) = \varphi^{(-1)}(\varphi(u) + \varphi(v))$ is a copula iff φ is convex.

Proof: see Nelsen.

Example:

Let $\varphi(t) = (-\ln(t))^{\theta}$, where $\theta \ge 1$. Then clearly φ is continuous, strictly decreasing and $\varphi(1) = 0$. Also $\varphi''(t) \ge 0$ on **I**, so φ is convex. So for the copula we get: $C_{\theta}(u, v) = \exp\{-[(-\ln(u))\theta + (-\ln(v))\theta]1/\theta\}$, which is the *Gumbel-Hougaard Family*.

Also note that $C_1 = \Pi$, and $C \propto = M$.

Level Curves:

The level curves of a copula are given by $\{(u, v) \in \mathbf{P} | C(u, v) = t, t \ge 0\}$. For Archimedean copulas, t > 0, this just the curve: $\varphi(u) + \varphi(v) = \varphi(t)$, which connects the points (1, t) and (t, 1). When t = 0, the set is called the zero set of C, denoted by Z(C).

<u>Theorem</u>

The level curves of an Archimedean copula are convex.

<u>F-measure</u>

Let X and Y be random variables in R with bivariate distribution F. Let A be a subset of R^2 . Then the F-measure of A is defined by $P[(X, Y) \in A]$.

We can use this definition to determine the C-measure of the level curves of an Archimedean copula C.

C(u, v) = max(1-[(1 - u)² + (1 - v)²]^{1/2}, 0)
$$\varphi(t) = (1 - t)^{2}$$

Note: it is possible for different Archimedean copulas to have the same zero set, as the following example shows:

$$\varphi_{1}(t) = \arctan\frac{1-t}{1+t}; \varphi_{2}(t) = \ln\frac{\sqrt{2}+1-t}{\sqrt{2}-1+t}$$

$$C_{1}(u,v) = \max(\frac{uv+u+v-1}{1+u+v-uv}, 0); C_{2}(u,v) = \max(\frac{uv+u+v-1}{3-u-v+uv}, 0)$$

 C_1 and C_2 both have the same zero curve v = (1 - u)/(1 + u), from which it follows that both have the same zero set.

<u>Theorem</u>:

Let C be an Archimedean copula generated by φ .

1. For t in (0, 1), the C-measure of the level curve $\varphi(u) + \varphi(v) = \varphi(t)$, is given by $\varphi(t) \left[\frac{1}{\varphi'(t^{-})} - \frac{1}{\varphi'(t^{+})} \right]$

in particular if $\phi'(t)$ exists, then the C-measure is 0.

2. If C is not strict, i.e., $\varphi(0)$ is finite, then the C-measure of the zero curve is equal to

$$-\frac{\varphi(0)}{\varphi'(0^+)}$$

Example:

For the copula generated by $\varphi(t) = (1 - t)^2$, we have:

•The C-measure of level curves C(u, v) = t, t in (0, 1) is 0.

•The C-measure of the zero curve is: $-\varphi(0)/\varphi(0) = 1/2$.

Theorem

Let C be an Archimedean copula generated by φ . Let $K_C(t)$ denote the C-measure of the set {(u, v) εP C(u, v) $\leq t$ }. Then for any t in I,

$$K_{C}(t) = t - \frac{\varphi(t)}{\varphi'(t^{+})}$$

<u>Corollary</u>

Let U and V be uniform (0, 1) random variables whose joint distribution function is the Archimedean copula C generated by φ , a continuous strictly decreasing convex function from **I** to $[0, \infty]$. Then the function K_C given above is the distribution function of the random variable C(U, V).

The next theorem extends these results.

Theorem

- Under the hypothesis of the previous lemma, the joint distribution function H(s,t) of the random variables $S = \varphi(U)/(\varphi(U) + \varphi(V))$ and T = C(U,V) is given by $H(s,t) = sK_c(t)$.
- A result of this theorem is the following algorithm for generating random samples (u,v) whose joint distribution function is an Archimedean copula C with generator φ .
- 1. Generate two independent standard uniform random numbers s and q.
- 2. Set $t = K_C^{(-1)}(q)$
- 3. Set $u = \varphi^{(-1)}(s\varphi(t))$ and $v = \varphi^{(-1)}((1-s)\varphi(t))$
- 4. The desired pair is (u,v).