THE JOY OF COPULAS

Why Copulas?

- Understanding relationships among multivariate outcomes is the goal of researchers.
- Regression analysis limited by the fact that one variable must be selected as dependent and the others as explanatory.
- Correlation coefficient widely used and perhaps misused measure of dependence.
- Correlation coefficient not invariant under monotonic transformation of variables.
- Marginal distributions and correlation coefficient do not determine the joint distribution, except for the elliptical distributions.
- Given marginals F_{1} and F_{2}, not all linear correlations between -1 and 1 are attainable.

Definition

A two dimensional copula is a real function, $C(x, y)$, defined on $I^{2}=[0,1] \times[0,1]$, with the range $I=[0,1]$, such that:
$C(0, v)=C(u, 0)=0$, for all u and v in I.
$C(1, v)=v, C(u, 1)=u$, for all u and v in I.
$C\left(u_{2}, v_{2}\right)-C\left(u_{2}, v_{1}\right)-C\left(u_{1}, v_{2}\right)+C\left(u_{1}, v_{1}\right) \geq 0$, for all rectangles
$\left[u_{1}, v_{1}\right] \times\left[u_{2}, v_{2}\right]$ in I^{2}. That is C is 2-increasing.
Remark1. We can see, from the above definition, that a copula represents the joint distribution of a two standard uniform random variables U_{1} and U_{2} :

$$
C\left(u_{1}, u_{2}\right)=P\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}\right)
$$

Remark2. Property a) says that C is grounded and b) says C has uniform margin.
Some important examples of copulas:

The level curves of $\operatorname{Min}(u, v)$

The Product Copula: $\Pi(u, v)=u v$

Fréchet bounds

For every multivariate distribution function $F\left(x_{1}, \ldots, x_{n}\right)$, we have:
$\max \left[\sum_{i=1}^{n} F_{i}\left(x_{i}\right)+1-n, 0\right] \leq F\left(x_{1}, \ldots, x_{n}\right) \leq \min \left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right)$
The bounds are known as Fréchet bounds.
If we reduce n to 2 , the bounds themselves are copulas and are denoted by:
$M\left(x_{1}, x_{2}\right)=\min \left(x_{1}, x_{2}\right)$, and $W\left(x_{1}, x_{2}\right)=\max \left(x_{1}+x_{2}-1,0\right)$. Thus for every copula C and every $\left(x_{1}, x_{2}\right)$ in \mathbf{I}, we have:
$W\left(x_{1}, x_{2}\right) \leq C\left(x_{1}, x_{2}\right) \leq M\left(x_{1}, x_{2}\right)$.
Remark. For $n>2, M\left(x_{1}, \ldots, x_{n}\right)$ and the product Π^{n} for x_{i} in I are still copulas, but the lower bound is no longer a copula.

What can one say about random variables with copulas M or W ?
Assume $X_{1} \sim F_{1}, X_{2} \sim F_{2}$. Also assume $X_{2}=T\left(X_{2}\right), T$ strictly increasing. Then:
$F_{2}(x)=P\left(X_{2} \leq x\right)=P\left(T\left(X_{1}\right) \leq x\right)=P\left(X_{1} \leq T^{-1}(x)\right)$
$F_{2}(x)=\left(F_{1} \circ T^{-1}\right)(x) \Rightarrow F_{2}=F_{1} \circ T^{-1}$
$C\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq F_{1}^{-1}\left(x_{1}\right), X_{2} \leq F_{2}^{-1}\left(x_{2}\right)\right)=P\left(F_{1}\left(X_{1}\right) \leq x_{1}, F_{2}\left(X_{2}\right) \leq x_{2}\right)$
$C\left(x_{1}, x_{2}\right)=P\left(F_{1}\left(X_{1}\right) \leq x_{1},\left(F_{1} \circ T^{-1}\right)\left(X_{2}\right) \leq x_{2}\right)=P\left(F_{1}\left(X_{1}\right) \leq x_{1}, F_{1}\left(X_{1}\right) \leq x_{2}\right)$
$C\left(x_{1}, x_{2}\right)=P\left(F_{1}\left(X_{1}\right) \leq \min \left(x_{1}, x_{2}\right)=M\left(x_{1}, x_{2}\right)\right.$

Similarly, but with more work, it can be shown that if $X_{2}=\beta\left(X_{1}\right)$, where β is strictly decreasing, then $C\left(x_{1}, x_{2}\right)=W\left(x_{1}, x_{2}\right)$.

SKLAR THEOREM

Let $F(x, y)$ be a joint distribution with continuous marginals $F_{1}(x)$ and $F_{2}(x)$.Then there exists a unique copula $C(x, y)$ such that

$$
F(x, y)=C\left(F_{1}(x), F_{2}(y)\right)
$$

Conversely if $C(x, y)$ is a copula and $F_{1}(x)$ and $F_{2}(y)$ are two continuous univariate distributions, then

$$
F(x, y)=C\left(F_{1}(x), F_{2}(y)\right)
$$

is a joint distribution with marginals $F_{1}(x)$ and $F_{2}(y)$.

Definition

Let $F(t)$ be a distribution function. Then the quasi-inverse of F is any function $F^{(-1)}(t)$ with domain I such that:

- If t is in $\operatorname{Ran} F$, then $F^{(-1)}(t)$ is any number x such that $F(x)=t$, i.e., for all t in $\operatorname{Ran} F, F\left(F^{(-1)}(t)=t\right.$;
- If t is not in RanF, then $F^{-1)}(t)=\inf \{x \mid F(x) \geq t\}=\sup \{x \mid F(x) \leqslant t\}$.

Corollary:

Let $F(x, y), F_{1}(x), F_{2}(y)$ and C be as in Sklar's theorem. Then for any u and v in $I, C(u, v)=F\left(F_{1}^{(-1)}(u), F_{2}^{(-1)}(v)\right)$.

Note: This result can be extended to n dimensions.

Example:

$$
\begin{aligned}
& F(x, y)=\left\{\begin{array}{ccc}
\frac{(x+1)\left(e^{y}-1\right)}{x+2 e^{y}-1} & (x, y) \in & {[-1,1] \times[0, \infty]} \\
1-e^{y} & (x, y) \in & (1, \infty] \times[0, \infty] \\
0 & \text { elsewhere }
\end{array}\right. \\
& F_{1}(x)=\left\{\begin{array}{cc}
0 & x<-1 \\
(x+1) / 2 & x \in[-1,1] \\
1 & x>1
\end{array}\right. \\
& F_{2}(y)=\left\{\begin{array}{cc}
0 & y<0 \\
1-e^{-y} & y \geq 0
\end{array}\right. \\
& C(u, v)=\frac{u v}{u+v-u v}
\end{aligned}
$$

Theorems:

1. Let X and Y be continuous random variables. Then X and Y are independent iff $C_{X Y}=\Pi$.
Proof: Assume X and Y are independent. Then $F(x, y)=F_{1}(x) F_{2}(y)$, and $C(u, v)=F\left(F_{1}^{(-1)}(u), F_{2}^{(-1)}(v)\right)=F\left(F_{1}^{(-1)}(u) F\left(F_{2}^{(-1)}(v)\right)=u v\right.$. The other direction is clear.
2. Let X and Y be continuous random variables with copula $C_{X Y}$. If α and β are strictly increasing on RanX and RanY respectively, then $C_{\alpha(X) \beta(Y)}=C_{X Y}$.
Proof: see Nelsen.
Note that the joint distribution of $\alpha(X)$ and $\beta(Y)$ is not the same as the joint distribution of X and Y. It is this property of copulas that will be most useful in studying the dependence structure of bivariate random variables.

Theorems cont.

3. Let X and Y be continuous random variables with copula $C_{X Y}$. If α and β are strictly monotone on RanX and RanY respectively, then
4. If α is strictly increasing and β is strictly decreasing, then

$$
C_{\alpha(X) \beta(Y)}(u, v)=u-C_{X Y}(u, 1-v) .
$$

2. If α is strictly decreasing and β is strictly increasing, then

$$
C_{\alpha(X) \beta(Y)}(u, v)=v-C_{X Y}(1-u, v) .
$$

3. If α and β are both strictly decreasing, then
$C_{\alpha(X) \beta(Y)}(u, v)=u+v-1+C_{X Y}(1-u, 1-v)$.

Survival Copulas

-Let (X, Y) be a random pair with distributions $F_{1}(x)$, and $F_{2}(y)$, and with copula C. Then C is the cdf of the random pair $U=F_{1}(X)$ and $V=F_{2}(Y)$.
\square The cdf of the random pair $(1-U, 1-V)$ is $C^{*}(u, v)$ given by:
$\mathrm{C}^{*}(u, v)=u+v-1+C(1-u, 1-v)$.

- C^{*} satisfies $P(X>x, Y>y)=\bar{F}(x, y)=C^{*}\left(\bar{F}_{1}(x), \bar{F}_{2}(y)\right)$

Example:
If X and Y are independent, then their survivor copula is given by:
$C^{*}(u, v)=u+v-1+(1-u)(1-v)=u v=\Pi$

Definition

Let $\phi:[0,1] \rightarrow[0, \propto]$ be a continuous decreasing function. Then the quasi-inverse of ϕ is any function $\phi^{(-1)}$ with the domain and range I such that
a. It t is in Ran ϕ, i.e., , then $\phi^{(-1)}(t)$ is any number in such that $\phi(x)$ $=t$, i.e. for all t in $\operatorname{Ran} \phi$, ;
b. If t is not in $\operatorname{Ran} \phi$, i.e., then $\phi^{(-1)}(t)=0$

$$
\phi^{(-1)}(t)=\left\{\begin{array}{cc}
\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\
0 & \phi(0) \leq t \leq \infty
\end{array}\right.
$$

Examples:

Now consider a class Φ of functions $\varphi:[0,1] \rightarrow[0, \propto]$ with the following properties:

$$
\varphi(1)=0
$$

$$
\varphi^{\prime}(t)<0 \quad \text { for all } t \text { in }(0,1)
$$

$$
\varphi^{\prime \prime}(t)>0 \quad \text { for all } t \text { in }(0,1)
$$

Note that the functions in Φ are convex .
The following properties of a convex function will be useful later:
Property1. $\phi(\alpha x+(1-\alpha) y) \leq \alpha \phi(x)+(1-\alpha) \phi(y) \quad$ for α in $(0,1)$.
Property 2. If $x_{1} \leqslant x_{2}$, then there exist an x such that

$$
\varphi(x)=\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right) .
$$

Constructing Copulas

Consider the following function of two variables:

$$
C(u, v)=\left\{\begin{array}{cc}
\varphi^{(-1)}(\varphi(u)+\varphi(v)) & \text { if } \varphi(u)+\varphi(v) \leq \varphi(0) \\
0 & \text { otherwise }
\end{array}\right.
$$

Fact: $C(u, v)$ as defined above satisfies the conditions of a copula and therefore is a copula. Copulas of this form are called Archimedean copulas. The function
φ Is called a generator of the copula. If $\varphi(0)=\propto$, then we call ϕ a strict generator.

Elementary properties.

1. C is symmetric: $C(u, v)=C(v, u) ; u, v$ in I.
2. C is associative: $C(C(u, v), w)=C(u, C(v, w))$.
3. If φ is a generator of C then for $c>0, c \varphi$ is also a generator of C.
4. C is strict iff $C(u, v)>0$, for all (u, v) in $(0,1]$.

The proof of these statements are straightforward!

Examples:

Copula: $\mathbf{C}_{\theta}(\mathbf{u}, \mathbf{v})$	Generator: $\varphi_{\theta}(\mathrm{t})$	$\theta \varepsilon$
Max $\left\{\left[\mathrm{u}^{-\theta}+\mathrm{v}^{-\theta}-1\right]^{-1 / \theta}, 0\right\}$ "Clayton Family	$(\mathrm{t}-\theta-1) / \theta$	$[-1, \propto) \backslash\{0\}$
exp $\left\{-\left[(-\ln (\mathrm{u}))^{\theta}+(-\ln (\mathrm{v}))^{\theta}\right]^{1 / \theta}\right\}$ "Gumbel-Hougaard Family"	$(-\ln (\mathrm{t}))^{\theta}$	$[1, \propto)$
uv/[1- $\theta(1-\mathrm{u})(1-\mathrm{v})]$ "Ali-Mikhail-Haq Family"	$\operatorname{In}[(1-\theta(1-\mathrm{t})) / \mathrm{t}]$	$[-1,1]$

Theorem

Let φ be a continuous, strictly decreasing function from Ito $[0, \propto]$ such that $\varphi(1)=0$, and $\phi^{(-1)}$ be the quasi-inverse of φ. Then the function C from I^{2} to I given by $C(u, v)=\varphi^{(-1)}(\varphi(u)+\varphi(v))$ is a copula iff φ is convex.
Proof: see Nelsen.

Example:

Let $\varphi(t)=(-\ln (t))^{\theta}$, where $\theta \geq 1$. Then clearly φ is continuous, strictly decreasing and $\varphi(1)=0$. Also $\varphi^{\prime \prime}(t) \geq 0$ on I, so φ is convex. So for the copula we get: $\mathrm{C}_{\theta}(\mathrm{u}, \mathrm{v})=\exp \{[(-\ln (\mathrm{u})) \theta+(-\ln (\mathrm{v})) \theta] 1 / \theta\}$, which is the Gumbel-Hougaard Family.
Also note that $C_{1}=\Pi$, and $C \propto=M$.

Level Curves:

The level curves of a copula are given by $\left\{(u, v) \varepsilon \|^{2} \mid C(u, v)=t, t \geq 0\right\}$. For Archimedean copulas, $t>0$, this just the curve: $\varphi(u)+\varphi(v)=\varphi(t)$, which connects the points $(1, t)$ and $(t, 1)$. When $t=0$, the set is called the zero set of C, denoted by $Z(C)$.

Theorem

The level curves of an Archimedean copula are convex.

F-measure

Let X and Y be random variables in R with bivariate distribution F. Let A be a subset of R^{2}. Then the F-measure of A is defined by $P[(X, Y) \varepsilon A]$.

We can use this definition to determine the C-measure of the level curves of an Archimedean copula C.

$$
\begin{gathered}
C(u, v)=\max \left(1-\left[(1-u)^{2}+(1-v)^{2}\right]^{1 / 2}, 0\right) \\
\varphi(t)=(1-t)^{2}
\end{gathered}
$$

Note: it is possible for different Archimedean copulas to have the same zero set, as the following example shows:

$$
\begin{aligned}
& \varphi_{1}(t)=\arctan \frac{1-t}{1+t} ; \varphi_{2}(t)=\ln \frac{\sqrt{2}+1-t}{\sqrt{2}-1+t} \\
& C_{1}(u, v)=\max \left(\frac{u v+u+v-1}{1+u+v-u v}, 0\right) ; C_{2}(u, v)=\max \left(\frac{u v+u+v-1}{3-u-v+u v}, 0\right)
\end{aligned}
$$

C_{1} and C_{2} both have the same zero curve $v=(1-u) /(1+u)$, from which it follows that both have the same zero set.

Theorem:

Let C be an Archimedean copula generated by φ.

1. For t in $(0,1)$, the C-measure of the level curve $\varphi(u)+\varphi(v)=\varphi(t)$, is given by

$$
\varphi(t)\left[\frac{1}{\varphi^{\prime}\left(t^{-}\right)}-\frac{1}{\varphi^{\prime}\left(t^{+}\right)}\right]
$$

in particular if $\varphi^{\prime}(t)$ exists, then the C-measure is 0 .
2. If C is not strict, i.e., $\varphi(0)$ is finite, then the C-measure of the zero curve is equal to

$$
-\frac{\varphi(0)}{\varphi^{\prime}\left(0^{+}\right)}
$$

Example:

For the copula generated by $\varphi(t)=(1-t)^{2}$, we have:
-The C-measure of level curves $C(u, v)=t, t$ in $(0,1)$ is 0 .
-The C-measure of the zero curve is: $-\varphi(0) / \varphi(0)=1 / 2$.

Theorem

Let C be an Archimedean copula generated by φ. Let $K_{C}(t)$ denote the C-measure of the set $\left\{(u, v) \varepsilon I^{2} \mid C(u, v) \leq t\right\}$. Then for any t in I,

$$
K_{C}(t)=t-\frac{\varphi(t)}{\varphi^{\prime}\left(t^{+}\right)}
$$

Corollary

Let U and V be uniform (0, 1) random variables whose joint distribution function is the Archimedean copula C generated by φ, a continuous strictly decreasing convex function from I to $[0, \infty]$. Then the function K_{C} given above is the distribution function of the random variable $C(U, V)$.

The next theorem extends these results.

Theorem

Under the hypothesis of the previous lemma, the joint distribution function $H(s, t)$ of the random variables $S=\varphi(U) /(\varphi(U)+\varphi(V))$ and $T=C(U, V)$ is given by $H(s, t)=s K_{C}(t)$.

A result of this theorem is the following algorithm for generating random samples (u, v) whose joint distribution function is an Archimedean copula C with generator φ.

1. Generate two independent standard uniform random numbers s and q.
2. Set $t=K_{C}{ }^{(-1)}(q)$
3. Set $u=\varphi^{(-1)}(s \varphi(t))$ and $v=\varphi^{(-1)}((1-s) \varphi(t))$
4. The desired pair is (u, v).
