
THE JOY OF COPULAS



Why Copulas?

Understanding relationships among multivariate outcomes is the 
goal of researchers.
Regression analysis limited by the fact that one variable must be 
selected as dependent and the others as explanatory.
Correlation coefficient widely used and perhaps misused measure of 
dependence.
Correlation coefficient not invariant under monotonic transformation 
of variables.
Marginal distributions and correlation coefficient do not determine 
the joint distribution, except for the elliptical distributions.
Given marginals F1 and F2, not all linear correlations between -1 and 
1 are attainable. 



Definition
A two dimensional copula is a real function, C(x, y),  defined on                

I2 = [0, 1]x[0, 1], with the range I = [0, 1], such that:
C(0, v) = C(u, 0) = 0, for all u and v in I.
C(1,v) = v, C(u, 1) = u, for all u and v in I.
C(u2, v2) – C(u2, v1) – C(u1, v2) + C(u1, v1) ≥ 0, for all rectangles                    
[u1, v1]x[u2, v2] in I2.That is C is 2-increasing.

Remark1. We can see, from the above definition, that a copula represents 
the joint distribution of a two standard uniform random variables U1 and 
U2:

Remark2. Property a) says that C is grounded and b) says C has uniform 
margin.

Some important examples of copulas:
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The level curves of Min(u, v)



The Product Copula: Π(u,v) = uv









Fréchet bounds

For every multivariate distribution function F(x1,…,xn), we have:

The bounds are known as Fréchet bounds.
If we reduce n to 2, the bounds themselves are copulas and are denoted 
by:
M(x1, x2) = min(x1, x2), and W(x1, x2) = max(x1 + x2 – 1, 0). Thus for every 
copula C and every (x1, x2) in I, we have:
W(x1, x2) ≤ C(x1, x2) ≤ M(x1, x2).
Remark. For n > 2, M(x1,…,xn) and the product Π n for xi in I are still 
copulas, but the lower bound is no longer a copula.
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What can one say about random variables with copulas M or W?

Assume X1 ~ F1, X2 ~ F2. Also assume X2 = T(X2), T strictly increasing. 
Then:

Similarly, but with more work, it can be shown that if X2 = β(X1), where β
is strictly decreasing, then C(x1, x2) = W(x1, x2).
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SKLAR THEOREM
Let F(x,y) be a joint distribution with continuous marginals F1(x) and 
F2(x).Then there exists a unique copula C(x,y) such that 

Conversely if C(x, y) is a copula and F1(x) and F2(y) are two continuous 
univariate distributions, then                                  

is a joint distribution with marginals F1(x) and F2(y).
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Definition
Let F(t) be a distribution function. Then the quasi-inverse of F is any 
function F(-1)(t) with domain I such that:
• If t is in RanF, then F(-1)(t) is any number x such that F(x) = t, i.e., 

for all t in RanF, F(F(-1)(t) = t;
• If t is not in RanF, then F(-1)(t) = inf{x| F(x) ≥ t} = sup{x| F(x) ≤ t }.

Corollary:
Let F(x,y), F1(x), F2(y) and C be as in Sklar’s theorem. Then for any 
u and v in I, C(u,v) = F(F1

(-1)(u), F2
(-1)(v)).

Note: This result can be extended to n dimensions.



Example:
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Theorems: 

1. Let X and Y be continuous random variables. Then X and Y are 
independent iff CXY = Π.
Proof: Assume X and Y are independent. Then F(x,y) = F1(x)F2(y), 
and C(u,v) = F(F1

(-1)(u), F2
(-1)(v)) =F(F1

(-1)(u) F(F2
(-1)(v)) = uv.

The other direction is clear.
2. Let X and Y be continuous random variables with copula CXY. If α

and β are strictly increasing on RanX and RanY respectively, then 
Cα(X)β(Y) = CXY.
Proof: see Nelsen.
Note that the joint distribution of α(X) and β(Y) is not the same as 
the joint distribution of X and Y. It is this property of copulas that will 
be most useful in studying the dependence structure of bivariate
random variables.



Theorems cont.
3. Let X and Y be continuous random variables with copula CXY. If α

and β are strictly monotone on RanX and RanY respectively, then
1. If α is strictly increasing and β is strictly decreasing, then 

Cα(X)β(Y) (u, v) = u – CXY(u,1- v).
2. If α is strictly decreasing and β is strictly increasing, then 

Cα(X)β(Y) (u, v) = v – CXY(1 - u, v).
3. If α and β are both strictly decreasing, then

Cα(X)β(Y) (u, v) = u + v – 1 + CXY(1 - u,1 - v).



Survival Copulas

Let (X, Y) be a random pair with distributions F1(x), and F2(y), and with 
copula C.  Then C is the cdf of the random pair U = F1(X) and V = F2(Y).

The cdf of the random pair (1 – U, 1 – V) is C*(u, v) given by:
C*(u, v) = u + v – 1 + C(1 – u, 1 – v).
C* satisfies

Example:
If X and Y are independent, then their survivor copula is given by:
C*(u, v) = u + v -1 + (1 – u)(1 – v) = uv = Π
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Definition
Let φ: [0,1] → [0, ∝] be a continuous decreasing  function. Then the 
quasi-inverse of φ is any function φ(-1) with the domain  and range I 
such that

a. It t is in Ranφ, i.e., , then φ(-1)(t) is any number in such that φ(x) 
= t, i.e. for all t in Ranφ, ;
b. If t is not in Ranφ, i.e.,  then  ( 1) ( ) 0tφ − =
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Examples:



Now consider a class Φ of functions ϕ: [0, 1] → [0, ∝] with the following 
properties:
ϕ(1) = 0
ϕ’(t) < 0 for all t in (0, 1)
ϕ’’(t) > 0 for all t in (0, 1)

Note that the functions in Φ are convex .

The following properties of a convex function will be useful later:

Property1. for α in (0, 1). 

Property 2. If x1 ≤ x2, then there exist an x such that                         
ϕ(x) = ϕ(x1) - ϕ(x2). 
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Constructing Copulas

Consider the following function of two variables:

Fact: C(u,v) as defined above satisfies the conditions of a copula and 
therefore is a copula. Copulas of this form are called Archimedean 
copulas. The function 
ϕ Is called a generator of the copula. If ϕ(0) = ∝, then we call φ a strict 
generator.
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Elementary properties.

1. C is symmetric: C(u, v) = C(v, u); u, v in I.
2. C is associative: C(C(u,v),w) = C(u, C(v, w)).
3. If ϕ is a generator of C then for c > 0, cϕ is also a generator of C.
4. C is strict iff C(u, v) > 0, for all (u, v) in (0, 1].

The proof of these statements are straightforward!



Examples:

[-1, 1]ln[(1 - θ(1 – t))/t]uv/[1 - θ(1 – u)(1 – v)]
“Ali-Mikhail-Haq Family”

[1, ∝)(-ln(t))θexp{-[(-ln(u))θ + (-ln(v))θ]1/θ}
“Gumbel-Hougaard Family”

[-1, ∝)\{0}(t-θ - 1)/θMax{[u-θ + v-θ - 1]-1/θ, 0}
“Clayton Family

θ εGenerator: ϕθ(t)Copula: Cθ(u, v)



Theorem
Let ϕ be a continuous, strictly decreasing function from I to [0, ∝ ] such 
that ϕ(1) = 0, and ϕ(-1) be the quasi-inverse of ϕ. Then the function C from 
I2 to I given by C(u, v) = ϕ(-1)(ϕ(u) + ϕ(v)) is a copula iff ϕ is convex.

Proof: see Nelsen.

Example:

Let ϕ(t) = (-ln(t))θ, where θ ≥ 1. Then clearly ϕ is continuous, strictly 
decreasing and ϕ(1) = 0. Also ϕ’’(t) ≥ 0 on I, so ϕ is convex. So for the 
copula we get: Cθ(u, v) = exp{-[(-ln(u))θ + (-ln(v))θ]1/θ}, which is the 
Gumbel-Hougaard Family. 

Also note that C1 = Π, and C∝ = M.



Level Curves:

The level curves of a copula are given by {(u, v) ε I2| C(u, v) = t, t ≥ 0}. For 
Archimedean copulas, t > 0, this just the curve: ϕ(u) + ϕ(v) = ϕ(t), which 
connects the points (1, t) and (t, 1). When t = 0, the set is called the zero 
set of C, denoted by Z(C).

Theorem

The level curves of an Archimedean copula are convex.

F-measure

Let X and Y be random variables in R with bivariate distribution F. Let A 
be a subset of R2. Then the F-measure of A is defined by P[(X, Y) ε A].

We can use this definition to determine the C-measure of the level curves 
of an Archimedean copula C.



C(u, v) = max(1-[(1 – u )2 + (1 – v)2]1/2, 0)

ϕ(t) = (1 – t)2



Note: it is possible for different Archimedean copulas to have the same 
zero set, as the following example shows:
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C1 and C2 both have the same zero curve v = (1 – u)/(1 + u), from 
which it follows that both have the same zero set.



Theorem:

Let C be an Archimedean copula generated by ϕ. 

1. For t in (0, 1), the C-measure of the level curve ϕ(u) + ϕ(v) = ϕ(t), is 
given by 

in particular if ϕ’(t) exists, then the C-measure is 0.

2. If C is not strict, i.e., ϕ(0) is finite, then the C-measure of the zero 
curve is equal to
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Example:

For the copula generated by ϕ(t) = (1 – t)2, we have:

•The C-measure of level curves C(u, v) = t, t in (0, 1) is 0.

•The C-measure of the zero curve is: -ϕ(0)/ϕ`(0) = 1/2.



Theorem

Let C be an Archimedean copula generated by ϕ. Let KC(t) denote the 
C-measure of the set {(u, v) ε I2| C(u, v) ≤ t}. Then for any t in I, 

Corollary

Let U and V be uniform (0, 1) random variables whose joint distribution 
function is the Archimedean copula C generated by ϕ, a continuous 
strictly decreasing convex function from I to [0, ∝]. Then the function KC
given above is the distribution function of the random variable C(U, V).

The next theorem extends these results.
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Theorem

Under the hypothesis of the previous lemma, the joint distribution function 
H(s,t) of the random variables S = ϕ(U)/(ϕ(U) + ϕ(V)) and T = C(U,V) is 
given by H(s,t) = sKC(t).

A result of this theorem is the following algorithm for generating random 
samples (u,v) whose joint distribution function is an Archimedean 
copula C with generator ϕ.

1. Generate two independent standard uniform random numbers s and q.

2. Set

3. Set u = ϕ(-1)(sϕ(t)) and v = ϕ(-1)((1 – s)ϕ(t))

4. The desired pair is (u,v).
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