Stat 576 5-15-25

$$V[\hat{E}_{kr}] = V[\hat{E}_{kr}]$$

$$= V[\hat{E}$$

This is the true variance of Eur.

H & T showed 2 unbiased estimators & the voriance

Example: Population has 3 strata

Each stratum has 2 clusters
We pick 1 cluster from each stratum
Select 2 people from each of the sampled
clusters.

1=6

|           |      |          | 4       |
|-----------|------|----------|---------|
|           | Hem  | Ti       |         |
| (20) (10) | 4.   | 보 골 =    | 上       |
|           | _ 42 | 2 1/20 = | 之       |
|           | 43   | 之艺二      | 1/30    |
| 30 20     | 44   | 노 글 =    | 30<br>T |
|           |      | 1.32     | 15      |
| (10)(5)   | 75   | 立三二二     | 5       |
|           | 96 ] | 文.%二     | 5       |
|           | ,    |          |         |

For V[tyr], we also need Tris for every i=j

If 
$$y_i 
leq y_i$$
 are from different strates,

then  $T_{ij} = T_i T_j$ 
 $T_{iz} = \frac{1}{2} \frac{1}{(20)} = \frac{1}{2} \frac{2}{20.19} = \frac{1}{200(9)}$ 
 $T_{24} = \frac{1}{30(29)}$ 

Now, plug these note either  $T_{30} = \frac{1}{5(4)}$ 

Villey or Valley  $T_{30} = \frac{1}{5(4)}$ 

PPS sampling, cumulative range method

TABLE 6.1
Population of Introductory Statistics Classes

| Class<br>Number | $M_i$ | $\psi_i$ | Cumulative $M_i$ Range |     |
|-----------------|-------|----------|------------------------|-----|
| 1               | 44    | 0.068006 | 1                      | 44  |
| 2               | 33    | 0.051005 | 45                     | 77  |
| 3               | 26    | 0.040185 | 78                     | 103 |
| 4               | 22    | 0.034003 | 104                    | 125 |
| 5               | 76    | 0.117465 | 126                    | 201 |
| 6               | 63    | 0.097372 | 202                    | 264 |
| 7               | 20    | 0.030912 | 265                    | 284 |
| 8               | 44    | 0.068006 | 285                    | 328 |
| 9               | 54    | 0.083462 | 329                    | 382 |
| 10              | 34    | 0.052550 | 383                    | 416 |
| 11              | 46    | 0.071097 | 417                    | 462 |
| 12              | 24    | 0.037094 | 463                    | 486 |
| 13              | 46    | 0.071097 | 487                    | 532 |
| 14              | 100   | 0.154560 | 533                    | 632 |
| 15              | 15    | 0.023184 | 633                    | 647 |
| Total           | 647   | 1        |                        |     |

Suppose these 3-digit random numbers are generated: {487, 369, 221, 326, 282}

Then these classes would be chosen:

{13, 9, 6, 8, 7}

## Lahiri's Method



Lahiri's (1951) method may be more tractable than the cumulative-size method when the number of psus is large. It is an example of a *rejective* method, because you generate pairs of random numbers to select psus and then reject some of them if the psu size is too small. Let N = number of psus in population and  $\max\{M_i\} =$  maximum psu size.

- 1 Draw a random number between 1 and N. This indicates which psu you are considering.
- 2 Draw a random number between 1 and  $\max\{M_i\}$ . If this random number is less than or equal to  $M_i$ , then include psu i in the sample; otherwise go back to step 1.
- 3 Repeat until desired sample size is obtained.



TABLE 6.2 Lahiri's Method, for Example 6.3

| First Random<br>Number (psu i) | Second Random<br>Number | $M_i$ | Action                                         |
|--------------------------------|-------------------------|-------|------------------------------------------------|
| 12                             | 6                       | 24    | 6 < 24; include psu 12 in sample               |
| 14                             | 24                      | 100   | Include in sample                              |
| 1                              | 65                      | 44    | 65 > 44; discard pair of numbers and try again |
| 7                              | 84                      | 20    | 84 > 20; try again                             |
| 10                             | 49                      | 34    | Try again                                      |
| 14                             | 47                      | 100   | Include                                        |
| 15                             | 43                      | 15    | Try again                                      |
| 5                              | 24                      | 76    | Include                                        |
| 11                             | 87                      | 46    | Try again                                      |
| 1                              | 36                      | 44    | Include                                        |

Proof of Lahiri's Method:

Let X = max { M;}

Let  $P_i(U_i) = Prob (Cluster i is chosen on 15 draw)$   $= 1 \cdot M_i \times X$ 

Prob [no cluster is satieted on 1st draw]

= 1-P Some cluster is selected on 14 draw]

= 1- 2 P[cluster j is chosen on 1st draw]

= 1- \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}{\fint}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac

Then P2(Ui) = Prob (Cluster i rs chosen on 2nd draw, swan that 12 draw failed)

Similary, Pk (Uc) = (1- x) x-1 x x

Then P(Ui) = Prob (Ui is 1 cluster chosen)

= ZRW)= 1/2 2 (1- 2)

9

(12)

## Stat 576 HW#6

- 9 The file statepps.dat lists the number of counties, land area, and 1992 population for the 50 states plus the District of Columbia.
  - **a** Use the cumulative-size method to draw a sample of size 10 with replacement, with probabilities proportional to land area. What is  $\psi_i$  for each state in your sample?
  - **b** Use the cumulative-size method to draw a sample of size 10 with replacement, with probabilities proportional to population. What is  $\psi_i$  for each state in your sample?
  - c How do the two samples differ? Which states tend to be in each sample?