luk had:

$$\hat{x}_{xy} - \underbrace{\xi}_{i} \underbrace{\hat{x}_{i}(x_{ij} - \overline{x}_{..})}_{i} - \hat{\beta} \underbrace{S}_{x_{i}} = 0$$

$$\hat{\gamma}_{c} = \underbrace{y_{i} - y_{..}}_{i} - \hat{\beta}(\overrightarrow{x}_{i}. - \overline{x}_{..})$$

$$\sum_{x_{i}} - \sum_{i} \left[\vec{y}_{i} - \vec{y}_{i} - \hat{\beta}(\vec{x}_{i} - \vec{x}_{i}) \right] / (k_{i} - \vec{x}_{i}) - \hat{\beta} \sum_{x_{i}} = 0$$

$$\sum_{i} - \sum_{i} \left[\vec{y}_{i} - \vec{y}_{i} - \hat{\beta}(\vec{x}_{i} - \vec{x}_{i}) \right] \sum_{i} (x_{ij} - \vec{x}_{i}) - \hat{\beta} \sum_{x_{i}} \times (x_{ij} - \vec{x}_{i}) - \hat{\beta} \sum_{x_{i}} = 0$$

$$S_{xy} - n \sum_{i} \left(\left[\vec{y}_{i} - \vec{y}_{i} - \hat{\beta}(\vec{x}_{i} - \vec{x}_{i}) \right] (\vec{x}_{i} - \vec{x}_{i}) - \hat{\beta} S_{x_{x}} \right)$$

$$S_{xy} - T_{xy} + \hat{\beta} T_{xx} - \hat{\beta} S_{x_{x}} = 0$$

$$\therefore \hat{\beta} = \frac{S_{xy} - T_{xy}}{S_{xx}} - \frac{E_{xy}}{E_{xx}}$$

$$Results: \hat{\mu} = \vec{y}_{i}, \hat{\beta} = \frac{E_{xy}}{E_{xx}}$$

$$\hat{\tau}_{i} = \vec{y}_{i}, -\vec{y}_{i}, -\hat{\beta}(\vec{x}_{i}, -\vec{x}_{i})$$

To test Ho: Ti = O, use the additional Sum of squares F test.

Full: Yij = 1 + 7; + B(xy-x..) + Eig

Reduced: yij = M + B(xij - 7.) + Eij

Full: SSE = $\frac{2}{5} \left[y_{ij} - \overline{y}_{..} - \left(\overline{y}_{i} - \overline{y}_{..} - \widehat{\beta}(\overline{x}_{i} - \overline{x}_{.}) - \widehat{\beta}(\overline{x}_{i} - \overline{x}_{..}) \right]^{2}$

 $= \sum_{i=1}^{2} \left[y_{ij} - \bar{y}_{i} - \hat{\beta}(x_{ij} - \bar{x}_{i}) \right]^{2}$

 $55\vec{\epsilon} = E_{yy} + \hat{\beta}^2 E_{xx} - 2\hat{\beta} E_{xy}$ $= E_{yy} + (E_{xy})^2 E_{xx} - 2(E_{xy}) E_{xy}$ $= E_{yy} + (E_{xy})^2 E_{xx} - 2(E_{xy}) E_{xy}$

SSE = Em - Em

Full model ANOVA

Source	55	94
Model	Ty + Exy	a
Enor	En - Exx	an-(a+1)
Total	Syy	an -1

Reduced:
$$y_{ij} = (\mu - \beta \overline{x}_{..}) + \beta x_{ij} + \epsilon_{ij}$$

$$\beta_{i} \qquad \beta_{i}$$

From 564, we know:
$$\hat{\beta}_i = \frac{S_{XY}}{S_{XX}}$$
 (6) $\hat{\beta}_i = \bar{y}_i - \hat{\beta}_i \bar{x}_i$.

So
$$\beta = \beta_i = \frac{S_{kx}}{S_{kx}}$$

Also,
$$SSE = S_{yy} - \frac{S_{xx}}{S_{xx}}$$
 $df_E = \alpha_1 - 2$

Additional sum of squares F test:

MSEL

$$= \left[\frac{3y - \frac{5^2 xy}{5^2 xx} - \left(E_H - \frac{E_{xy}}{E_{xx}}\right)}{\alpha n - 2 - \left(\alpha n - (\alpha + 1)\right)} \right]$$

MSELON

$$F = \begin{bmatrix} T_{yy} - S_{xy}^2 + E_{xx}^2 \\ \hline & S_{xx} \end{bmatrix}$$

$$\frac{1}{4} = \begin{bmatrix} T_{yy} - S_{xy}^2 + E_{xx} \\ \hline & S_{xx} \end{bmatrix}$$

$$\frac{1}{4} = \begin{bmatrix} T_{yy} - S_{xy}^2 + E_{xx} \\ \hline & S_{xx} \end{bmatrix}$$

$$\frac{1}{4} = \begin{bmatrix} T_{yy} - S_{xy}^2 + E_{xx} \\ \hline & S_{xx} \end{bmatrix}$$

df = a-1, an- (a+1)

Usual ANOCOVA layout:

Source	55	4
Reg	5 xv /5 xx	1
TRT	Ty - 5 + Ex	Q-1
ERR	En- Exy	an - (a+1)
TOT	Syy	Cm -1

Niks.

Type II " " " Conditional

Matrix ver		t=1,,a	(P)
40 = h	4 76 + B(Xi - X.) + 80		
y n y 2n + y 2n ::	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l = a	E wed
yai Nx1	1 -11 XG1-X.		4.20 4.21

14.20. An experiment is designed to study pigment dispersion in paint. Four different mixes of a particular pigment are studied. The procedure consists of preparing a particular mix and then applying that mix to a panel by three application methods (brushing, spraying, and rolling). The response measured is the percentage reflectance of pigment. Three days are required to run the experiment, and the data obtained follow. Analyze the data and draw conclusions, assuming that mixes and application methods are fixed.

Day	Application Method	Mix			
		1	2	3	4
1	1	64.5	66.3	74.1	66.5
	2	68.3	69.5	73.8	70.0
	3	70.3	73.1	78.0	72.3
2	1	65.2	65.0	73.8	64.8
	2	69.2	70.3	74.5	68.3
	3	71.2	72.8	79.1	71.5
3	1	66.2	66.5	72.3	67.7
	2	69.0	69.0	75.4	68.6
	3	70.8	74.2	80.1	72.4

14.21. Repeat Problem 14.20, assuming that the mixes are random and the application methods are fixed.