Stat 451 Homework #7

5.52 From the negative binomial distribution, we obtain

$$b^*(8; 2, 1/6) = {7 \choose 1} (1/6)^2 (5/6)^6 = 0.0651.$$

5.58 (a) Using the Poisson distribution with x = 5 and $\mu = 3$, we find from Table A.2 that

$$p(5;3) = \sum_{x=0}^{5} p(x;3) - \sum_{x=0}^{4} p(x;3) = 0.1008.$$

- (b) $P(X < 3) = P(X \le 2) = 0.4232$.
- (c) $P(X \ge 2) = 1 P(X \le 1) = 0.8009$.
- 5.76 (a) $P(X \le 1 | \lambda t = 2) = 0.4060$.
 - (b) $\mu = \lambda t = (2)(5) = 10$ and $P(X \le 4|\lambda t = 10) = 0.0293$.
- 6.4 (a) z = (17 30)/6 = -2.17. Area=1 0.0150 = 0.9850.
 - (b) z = (22 30)/6 = -1.33. Area=0.0918.
 - (c) $z_1 = (32-3)/6 = 0.33$, $z_2 = (41-30)/6 = 1.83$. Area = 0.9664 0.6293 = 0.3371.
 - (d) z = 0.84. Therefore, x = 30 + (6)(0.84) = 35.04.
 - (e) $z_1 = -1.15$, $z_2 = 1.15$. Therefore, $x_1 = 30 + (6)(-1.15) = 23.1$ and $x_2 = 30 + (6)(1.15) = 36.9$.
- 6.10 (a) z = (10.075 10.000)/0.03 = 2.5; P(X > 10.075) = P(Z > 2.5) = 0.0062. Therefore, 0.62% of the rings have inside diameters exceeding 10.075 cm.
 - (b) $z_1 = (9.97 10)/0.03 = -1.0$, $z_2 = (10.03 10)/0.03 = 1.0$; P(9.97 < X < 10.03) = P(-1.0 < Z < 1.0) = 0.8413 0.1587 = 0.6826.
 - (c) z = -1.04, x = 10 + (0.03)(-1.04) = 9.969 cm.
- 6.12 $\mu = 99.61$ and $\sigma = 0.08$.
 - (a) P(99.5 < X < 99.7) = P(-1.375 < Z < 1.125) = 0.8697 0.08455 = 0.7852.
 - (b) P(Z > 1.645) = 0.05; x = (1.645)(0.08) + 99.61 = 99.74.
- 6.22 (a) $P(X > 7) = \frac{10-7}{10} = 0.3$.
 - (b) $P(2 < X < 7) = \frac{7-2}{10} = 0.5$.